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This work develops an online method for robustly training data-driven reduced-order
models (ROMs) for Hall thruster plasma simulations. Startup transients from simula-
tion initialization are known to degrade long-term prediction accuracy of ROMs, so it is
desirable for both training ROMs and terminating simulations to accurately detect the end-
of-transience. To this end, the dynamic mode decomposition (DMD) is applied within a
sliding-window algorithm to detect end-of-transience in the Hall2De fluid simulation code.
The sliding-window method is shown to accurately detect the relaxation of simulation
startup transients using a non-intrusive, data-driven approach. Furthermore, the method
produces a ROM with more accurate long-term predictions compared to a ROM trained
naively on initial simulation data, in some cases by an order of magnitude. Acceleration
of the Hall2De simulation is achieved by early termination of the expensive physics solver.
Nonlinear effects are observed to limit the accuracy of the method, which may be addressed
in future work by using extensions to DMD or nonlinear alternatives.

Nomenclature

u(x, t) The ground truth physics solution field at spatial location x and time t, assumed
to be a solution of a PDE of the form ∂u

∂t = F(u), with spatial operator F

u(t) The ground truth numerical solution at time t obtained by spatial discretization
of F so that du

dt = F (u), with u ∈ RN , N = MQ for M mesh cells and Q field
quantities at each cell. More generally, u(t) can be treated as the state vector at
time t for a generic ODE du

dt = F (u) with initial conditions u(0)

û(t) The data-driven prediction of the solution at time t using the reduced-order model
dû
dt = F̂ (û; b), with û ∈ RN and tuneable model parameters b

tl The initial time of the training window

tp The initial time of the prediction window

Tl The duration of the training window

Tp The duration of the prediction window
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L The time between the end of the training window and the start of the prediction
window

S The sliding distance for the training and prediction windows

εtarg The target relative error below which to terminate the sliding-window algorithm

R The number of successive iterations to meet the error target εtarg before termi-
nating

ul, ûl The ground truth physics and reduced-order model solutions over the training
window, respectively

b(w) The reduced-order model parameters learned using training data from the training
window at window index w

û
(w)
p The data-driven prediction over the prediction window, obtained with the

reduced-order model trained over the training window at index w, i.e. F̂ (û; b(w))

ε(w) The relative error between successive data-driven predictions

I. Introduction

Hall thrusters are leading candidates for in-space electric propulsion due to their high efficiency, cost-
effectiveness, and high level of maturity. They produce thrust by ionizing and electrostatically accelerat-

ing a neutral gas to high exit velocities, obtaining a high specific impulse with low fuel requirements. Along
with the proliferation of in-flight Hall thrusters has come the increasing need for physics-based modeling
capabilities to aid testing and flight qualification, and furthermore to assist in design and optimization.
Physical models of Hall thrusters typically involve capturing the flow of neutral gas from the anode down a
cylindrical discharge channel, where the gas is ionized by a strong azimuthal electron current, accelerated by
a strong electric field, and finally joined by a neutralizing stream of cathode electrons.1 The dynamics of the
discharge channel plasma are ultimately governed by the Boltzmann equation,2 which provides a micro-scale
kinetic description of the partially ionized gas. However, device-scale phenomena occur on much larger time
and length scales. The primary challenge in modeling Hall thrusters at the device scale, then, is to accurately
capture the physics at all relevant scales in a computationally efficient manner.

To this end, Hall thruster models have grown in both scale and complexity, ranging from 1D fluid
descriptions3,4 to 3D particle-in-cell (PIC).5,6 Indeed, there is growing consensus that a highly resolved
3D kinetic simulation may be required to capture all of the complexity and physics of interest in a Hall
thruster plasma.7 In this case, increasing resolution and model fidelity quickly outpace modern computing
capabilities. Furthermore, large-scale simulations of this nature are not practical for engineering tasks such
as design and uncertainty quantification. There is therefore a need to develop methods to accelerate or
otherwise reduce the cost of high-fidelity models while maintaining high accuracy.

One promising method for accelerating expensive physics solvers is through data-driven reduced-order
models (ROMs). The primary advantage of most data-driven ROMs is that they are cheap to evaluate and
can be learned in a black-box, non-intrusive manner; the only requirement is access to solution data from
the physics solver. Once trained, a ROM provides a cheap approximation of the expensive solver that can be
used for downstream tasks like design or optimization. Data-driven ROMs have been successfully applied to
plasma systems8,9 and to PIC Hall thruster simulations.10,11 The primary challenge with this approach is
building a ROM that extrapolates outside of the data it was trained on. This problem arises in most data-
driven frameworks and typically stems either from poor training data or from model complexity. The goal
is to use a model that is expressive enough to capture the behavior of the underlying physics solver without
overfitting, and to train on data that is representative of all desired prediction regions. In the context of
learning dynamics, such as the time-history of a PDE solver, this means handling nonlinearity in the physics
model and training over non-transient regions of the response.

This work develops an online method to address these limitations in training accurate data-driven ROMs
for Hall thruster simulations. The sliding-window method from Ref. 12 is extended to a general ROM setting
and applied to the Hall2De fluid simulation code13 for data-driven acceleration. The sliding-window method
is shown to accurately detect end-of-transience and produce a ROM with better extrapolation performance
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compared to simple forecasting. Acceleration is obtained by reducing the total time over which the expensive
physics solver is evaluated. The contributions of this work include the extension of the sliding-window method
to a general ROM setting and the demonstration of data-driven acceleration on a Hall thruster simulation.
Section II outlines the sliding-window method and the Hall2De simulation setting. In Section III, the
performance of the ROM is demonstrated on a test problem and on the Hall thruster simulation. Finally,
the results are discussed in the broader context of data-driven reduced-order modeling and several paths for
future work are suggested.

II. Methods

This section outlines the Hall2De simulation setting and the generalized sliding-window ROM method
originally proposed in Ref. 12. Similar to prior work,11,14 the dynamic mode decomposition is chosen to test
the ROM methods and is also described in this section.

A. Hall2De simulation setting

Hall2De13 solves the 2D fluid conservation equations for each plasma species in an axisymmetric axial-radial
(z, r) coordinate system, as shown in Figure 1. Propellant neutrals are injected at the left anode boundary

Outflow

Axisymmetric

Walls

Cathode

Anode

𝑧

𝑟

Figure 1. Illustration of the 2D axial-radial (z, r) simulation domain for the Hall2De code. The simulation
domain is depicted in orange and boundary surfaces are labeled.

condition at a specified flow rate, and the anode is held fixed at a constant discharge voltage. Neutrals
are ionized in the discharge channel (multiple ionization is allowed, but only single ionization is considered)
and accelerated into the near-field plume. Thruster walls use insulating boundary conditions, pole covers
are cathode-tied conductors, and all other domain exits use outflow conditions. This study considers the
magnetically-shielded H9 Hall thruster15 operating on Krypton propellant at a discharge current and voltage
of 15 A and 300 V, respectively. Table 2 summarizes the primary simulation settings, and the original
works13,16 describe the equations of motion and numeric solvers in detail. Since the purpose of this study is
to test the performance of ROM methods, the chosen simulation uses a standard setup and operating mode
for clarity and ease of demonstration.

Hall2De solves for the time-evolution of plasma properties on a 2D quadrilateral magnetic-field-aligned
mesh. The goal of a ROM in this context is to approximate the dynamics of these plasma properties in a
computationally efficient manner, so that the Hall2De field solution may be cheaply estimated at a future
time. Table 3 lists the primitive plasma properties of interest in the Hall2De solution. The solver obtains
all primitives as solutions of a system of PDEs (note that neutral velocity is solved with a view factor
algorithm17 and electron current is obtained from the algebraic generalized Ohm’s law, so these properties
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Table 2. Hall2De numerical settings and operating conditions for the H9 Hall thruster simulation.

Simulation setting Value

Propellant Krypton

Mass flow rate 11.8 mg/s

Cathode flow fraction 7%

Discharge voltage 300 V

Discharge current 15 A

Background pressure 5 µTorr

Simulation duration 1 ms

Time step 10 ns

Number of cells 3925

Number of ion charge states 1

are excluded from the analysis).

Table 3. Primitive plasma properties of interest in the Hall2De simulation.

Field quantity Symbol Units

Ion density ni m−3

Ion axial velocity ui,z m/s

Ion radial velocity ui,r m/s

Electron temperature Te eV

Electrostatic potential ϕ V

With the provided simulation settings, and saving the cell-center discretized solution every 20 time steps
(0.2 µs), this amounts to a solution array of shape (3925, 5, 5000) for 3925 cells, 5 primitives, and 5000
time snapshots (a total of roughly 785 MB in double-precision). Note that the simulation data size is
comparatively small to 3D PIC6 which may be O(10 GB) per snapshot, yet it serves in this study as a useful
platform for testing the ROM methods, which may be applied to larger-scale simulations in future work. All
quantities were normalized separately to the range (0, 1) for the ROM analyses.

B. The sliding-window method

This section outlines an adaptation of the sliding-window method12 to the general online setting of training
reduced-order models from simulation data. Typically, an expensive solver runs for a set length of time and
a ROM is fit to time snapshots of the solution (via least squares regression, loss minimization, or similar).
Then, the trained ROM forecasts the solution at future, unseen times. This approach involves truncating
an initial “transient” portion of the simulation before training the ROM, since transient data obfuscates the
long-term, “steady-state” behavior of the dynamics and reduces the prediction accuracy of the ROM. The
sliding-window method automatically detects simulation end-of-transience in an online fashion, providing a
robust way to truncate simulation data and to train a more accurate ROM for long-time forecasting. As
in Ref. 12, the end-of-transience can be used as an early stopping criteria for the expensive solver, thereby
providing computational speedup for any downstream analyses using the ROM in place of the solver. In
this sense, the present work also seeks data-driven “acceleration” by providing an early termination for
the Hall2De simulation. Algorithm 1 outlines the sliding-window method, using the nomenclature defined
previously, and Figure 2 provides an illustration of the method. The method is modified in three primary
ways from Ref. 12: 1) the support of general reduced-order models (via F̂ (û; b)) beyond DMD (although
only DMD has been tested here, the extension allows consideration of nonlinear models), 2) a more robust
error termination criteria, and 3) a consolidation of the important hyperparameters.

To detect end-of-transience, the method incrementally trains a ROM over a sliding portion of the sim-

The 39th International Electric Propulsion Conference, Imperial College London

London, United Kingdom 14–19 September 2025

Copyright 2025 by the Electric Rocket Propulsion Society. All rights reserved.

Page 4



𝑡 = 0

Simulation data 𝒖(𝑡)

𝑇𝑙 𝑇𝑝𝑆 𝐿𝑡𝑙 𝑡𝑝

Training Prediction

(𝑤) (𝑤 + 1) (𝑤) (𝑤 + 1)

Comparison window

Figure 2. Illustration of the sliding-window method for learning a data-driven reduced-order model. A ROM
is learned using data in the training window and forecasts are made in the prediction window. The windows
are incremented in time by distance S from index w (cyan) to index w+1 (orange). ROMs are compared in the
overlapping portion of the prediction windows (purple). Simulation data u(t) from the ground truth physics
solver accumulates over time (solid blue bar). The same nomenclature is used as in Algorithm 1.

Algorithm 1 Sliding-window method for training a data-driven reduced-order model, adapted from Ref. 12.

1: Input: Durations: (Tl, Tp, L, S), Targets: (εtarg, R), Initial conditions: u(0)

2: Initialize: w = 1, tl = 0, û(0) = u(0)

3: tp ← tl + Tl + L

4: tf,prev ← tp + Tp

5: u← SolveODE du
dt = F (u) for t ∈ [tl, tl + Tl]

6: loop

7: ul ← [u(t) : t ∈ [tl, tl + Tl]] ▷ Train reduced-order model

8: ûl ← SolveODE dû
dt = F̂ (û; b) for t ∈ [tl, tl + Tl]

9: b(w) ← argminb∥ul − ûl∥
10: û

(w)
p ← SolveODE dû

dt = F̂ (û; b(w)) for t ∈ [tp, tp + Tp]

11:

12: if w > 1 then ▷ Compute error over comparison window

13: û
(w)
ε ←

[
û
(w)
p (t) : t ∈ [tp, tf,prev]

]
14: û

(w−1)
ε ←

[
û
(w−1)
p (t) : t ∈ [tp, tf,prev]

]
15: ε(w) ← ∥û(w)

ε −û(w−1)
ε ∥2

∥û(w−1)
ε ∥2

16: tf,prev ← tp + Tp

17: if w ≥ R then

18: if all(ε(w), ε(w−1), . . . , ε(w−R)) < εtarg then

19: exit loop ▷ Terminate simulation

20: end if

21: end if

22: end if

23:

24: u← concatenate(u, SolveODE du
dt = F (u) for t ∈ [tl + Tl, tl + Tl + S]) ▷ Slide windows

25: tl ← tl + S

26: tp ← tl + Tl + L

27: w ← w + 1

28: end loop

ulation data (i.e. the training window) and makes predictions over a future prediction window. As the
simulation progresses, the training and prediction windows advance forward in time. The ROM predictions
from successive iterations are compared in the overlapping section of the prediction windows. When the
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difference between successive ROM predictions converges below a set tolerance, this indicates a stable ROM
solution and end-of-transience in the simulation, and the solver terminates. Table 4 summarizes the main
hyperparameters of the algorithm and rough guidelines for choosing their values.

Table 4. Description and guidelines for the sliding-window algorithm hyperparameters.

Parameter Symbol Guidelines

Training window length Tl Should be large enough to cover several oscillation cycles,
which may require some prior knowledge.

Prediction window length Tp Larger values encourage a greater degree of agreement be-
tween successive ROM predictions. Typically set equal to
training window length.

Prediction window offset L Determines the extent of time past training where non-
transient behavior should be expected. Typically set to a
multiple ∼ 5− 10 of the training window length.

Sliding distance S Balances precision in identifying end-of-transience with al-
gorithm cost. Small values identify end-of-transience more
accurately but increase computational cost due to more
ROM train/predict iterations.

Target relative error εtarg When to terminate the expensive solver is based on whether
relative error in ROM predictions is below this threshold for
R consecutive iterations. εtarg reflects desired accuracy in
ROM extrapolations (i.e. 1%, 10%, etc.)

Repetitions for termination R Larger values increase robustness against noise but may de-
lay detection of end-of-transience. Typically set to ∼ 1− 5.

Note: While the sliding-window method is presented in continuous time, practically one must work with discrete-
time data, so it is advisable to choose sliding distance and window lengths that are integer multiples of the
simulation time step for ease of implementation.

C. Dynamic mode decomposition

This section summarizes the operating principles of the dynamic mode decomposition (DMD).18,19 In the
notation of Algorithm 1, DMD is used in this study as the specific choice of ROM F̂ (û; b) in the sliding-
window method. DMD has been developed and applied to many simulation settings, including several
plasma systems,8,10,11 due to its simplicity, interpretability, and ease of implementation. DMD seeks a
linear approximation of the dynamics of a system via:

du

dt
= F (u) ≈ Au, u0 ≜ u(t = 0) (1)

so that the approximate state û has a closed-form analytical solution:

û(t) = eAtu0. (2)

The system dynamics matrix A is learned from m discrete-time snapshots of simulation data via a least-
squares fit:

U =

 | |
u(t1) . . . u(tm−1)

| |

 , U ′ =

 | |
u(t2) . . . u(tm)

| |

 , (3)

U ′ ≈ AU, with (4)

A = argmin
B
∥U ′ −BU∥2 = U ′U†. (5)
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Typically, the state vector û has high dimension and so a rank-r truncated singular value decomposition
(SVD) is used to obtain the modal-decomposition form of Eq.(2):

û(t) ≈
r∑

i=1

vie
ωitai, (6)

where vi ∈ RN and ωi are the DMD modes and eigenvalues, respectively, and ai is an amplitude from
the i-th component of the product [vi . . . vN ]u0. This study additionally considers a constant offset in the
linear model via dû/dt = Aû + c to capture non-zero steady-state values by solving for an augmented
state vector [û | 1]T . As mentioned previously, the two primary limitations of data-driven ROM prediction
accuracy are model complexity and training data quality. This study adopts a simple linear model and
primarily focuses on improving the latter aspect by detecting and training on non-transient data via the
sliding-window algorithm. Training with steady-state data is especially important for linear DMD, where
nonlinear transients can significantly degrade long-time prediction accuracy. Future work will additionally
consider nonlinearity in the model.20–22 Presently, only the exact-DMD method is considered.19

III. Results

This section presents the performance of the sliding-window method on two problems: first on the
nonlinear Duffing oscillator to highlight end-of-transience detection, and second on the H9 Hall thruster
simulation described in Section II. The results demonstrate the accuracy of the method in detecting end-
of-transience and emphasize its potential for providing data-driven acceleration to expensive physics solvers.
Several challenges remain with respect to capturing model nonlinearity.

A. Duffing oscillator

The Duffing oscillator is used as a toy problem with controllable transient behavior to test the sliding-window
algorithm. For position x and velocity v of the oscillator, the dynamics of the state vector u = [x, v] are
expressed as:

du

dt
=

[
ẋ

v̇

]
=

[
0 1

−ω2
0 −2ζω0

][
x

v

]
− s(t)β

[
0

x3

]
+ f(t)

[
0

1

]
, (7)

with damping ζ, natural frequency ω0, forcing f(t), and a nonlinear spring force scaled by β. The envelope
s(t) enforces a smooth transition from s(t = 0) = 1 to s(t = tc) = 0, effectively removing the nonlinear term
at the specified cutoff time tc (a quintic smoothstep polynomial is used for the envelope). When t > tc, the
system is exactly linear and the sliding-window method with DMD should capture this nonlinear→linear
transition. The system is integrated with a fourth-order Runge-Kutta scheme to a final time of tf = 100
and a constant forcing f(t) = c is used. Table 5 lists the values of all simulation parameters.

Table 5. Simulation parameters for the Duffing oscillator problem Eq.(7).

Parameter Symbol Value

Initial condition u0 [0, 0]

Time step ∆t 0.02

Final time tf 100

Transient cutoff time tc 40

Damping ratio ζ 0.02

Natural frequency ω0 1

Nonlinear scale β 5

Constant forcing c 0.5

The goal of the sliding-window method is to detect the cutoff tc by incrementally training over simulation
data until the linear DMD model converges. Table 6 summarizes all sliding-window hyperparameters used
for the Duffing oscillator and the Hall2De simulation.
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Table 6. Sliding-window hyperparameters (Algorithm 1) for the Duffing oscillator problem and the Hall2De
simulation.

Parameter Symbol Duffing Hall2De

Training window length Tl 13 0.15 ms

Prediction window length Tp 13 0.15 ms

Prediction window offset L 20 0.2 ms

Sliding distance S 1 0.01 ms

Target relative error εtarg 0.001 0.01

Repetitions for termination R 7 3

Figure 3 shows the true oscillator position (x) over time (t) compared to three ROM predictions: 1)
the initial ROM trained over the initial training window (w = 0), 2) a ROM trained over an intermediate
window (w = 30), and 3) the final ROM upon termination of the sliding-window algorithm at w = 45. The
nonlinear→linear transition at tc = 40 is evident by the transition to a damped harmonic oscillator decaying
to the steady-state value of c = 0.5. The high prediction error for ROMs trained in the nonlinear region t < tc

0 20 40 60 80 100
Time (t)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Po
sit

io
n 

(x
)

True model
ROM (w = 0)
ROM (w = 30)
ROM (w = 45)
Transient cutoff

0 20 40 60 80 100
Time (t)

10 4

10 3

10 2

10 1

100
Re

lat
iv

e e
rro

r

Figure 3. The true oscillator position (x) over time (t) compared to the ROM for three training windows (left)
and the relative error between the ROMs and the true model (right). The training windows are highlighted
for each case: the initial window at w = 0 (gray), an intermediate window at w = 30 (blue), and the final
window (w = 45) at termination of the sliding-window algorithm (orange). The transient cutoff time tc = 40
is indicated by a red vertical line. Overall, the final window ROM performs best for long-term forecasting,
indicating successful detection of simulation end-of-transience.

emphasizes the intuitive result that the linear ROM (DMD) performs best when trained on linear simulation
data. Furthermore, the sliding-window method accurately detects this transition by terminating at window
w = 45, just slightly past the true cutoff at w = 40. Figure 4 highlights this result by showing the decay
in ROM comparison error (ε(w)) below the target (εtarg) right at the transient cutoff. For robust detection
of the cutoff in the presence of noise, the algorithm terminates only when ε(w) < εtarg for R consecutive
iterations; this is why the detected cutoff is slightly past the true cutoff. The goal of the sliding-window
method is primarily to detect end-of-transience; to improve the accuracy of the DMD prediction itself, it is
likely necessary to extend the training window, reduce the time step, or consider other DMD variants.19
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Figure 4. Decay of ROM comparison error (ε(w)) over sliding window index (w) for the Duffing oscillator
problem. The transient cutoff occurs at w = 40 (red) and the algorithm terminates at w = 45 (orange). The
comparison error drops below the threshold εtarg (green) when ROM predictions converge, which occurs in
the linear region past the transient cutoff, indicating successful detection of simulation end-of-transience.

B. Hall2De simulation

Hall2De imposes several challenges beyond the simple Duffing oscillator, most prominently high-dimensionality
and nonlinearity. The high dimension stems from a state vector u ∈ RMQ for M = 3925 finite-volume cells
and Q = 5 primitive plasma properties at each cell (see Table 3). A rank-r truncated SVD largely mitigates
the problem of dimension, as the numerical solution of PDEs can often be accurately represented in a much
lower-dimensional “latent” space. For SVD, the latent space corresponds to a basis of r eigenvectors (or
modes) that reconstruct the data within some error tolerance; greater truncation trades off with greater
reconstruction error.

The nonlinearity stems from the underlying system of PDEs ∂u
∂t = F(u), where the differential operator

F(u) contains nonlinear terms such as advection (u∂u
∂x ), fluxes (∇ · (nu⃗)), etc. In this context, the goal of

the sliding-window method is to detect the relaxation of startup transients from initial conditions. In the
context of Hall thruster plasma simulations, this transition corresponds to advection of the initial plasma
downstream and a relaxation to equilibrium operation. Ideally, equilibrium entails quasi-periodic oscillations
(i.e. the breathing mode) or constant, steady-state values, both which can be accurately captured by linear
DMD. By detecting the onset of equilibrium, the sliding-window method permits early termination of the
expensive solver and cheap, long-term ROM forecasts. Table 6 includes the sliding-window hyperparameters
for the Hall2De analysis, and a rank r = 330 SVD truncation was used for all DMD fits.

Figure 5 shows the thrust computed from the true Hall2De simulation over time compared to three
ROM predictions: 1) the initial ROM (w = 0), 2) an intermediate ROM (w = 18), and 3) the final ROM
upon termination of the sliding-window algorithm (w = 44). The thrust is computed in all cases as the
surface integral over the outflow boundaries of ion momentum flux, and provides a single, scalar metric to
compare the ROMs to the true simulation. While thrust provides an indication of goodness of fit at the
domain boundaries, the relative error in Figure 5 is computed over the entire simulation domain, providing
an average performance metric over all cell quantities.

In this specific Hall2De configuration, the target discharge current is achieved by iterating a global factor
on the anomalous electron transport. The relaxation of discharge current (and thrust by proxy) to a constant
value characterizes the transition from transient dynamics to steady-state. Figure 5 illustrates this transition
in the true model around t = 0.4 ms where thrust reaches a constant value (note that discharge current is
not shown because it requires prediction of electron current density, which is not considered in the present
analysis). Accordingly, ROM prediction accuracy improves as the training window slides past the transition,
resulting in a final training window around t = 0.42 ms where the sliding-window accurately detects the
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Figure 5. The thrust computed from the true Hall2De simulation over time compared to the ROM for three
training windows (left) and the relative error between the ROMs and the true model (right). The training
windows are highlighted for each case: the initial window at w = 0 (gray), an intermediate window at w = 18
(blue), and the final window (w = 44) at termination of the sliding-window algorithm (orange). The thrust
is computed over the outflow boundaries and the relative error is computed over the full simulation domain.
Overall, the final window ROM performs best for long-term forecasting, indicating successful detection of
simulation end-of-transience.

transition and terminates. Figure 6 highlights this result by showing the decay in ROM comparison error
ε(w) below the target εtarg, sending the flag for termination of the expensive solver at window index w = 44.
Note that immediately after termination, the comparison error increases back above the threshold. This may
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Figure 6. Decay of ROM comparison error (ε(w)) over sliding window index (w) for the Hall2De simulation.
The algorithm terminates at w = 44 (orange) when the comparison error drops below the threshold εtarg (green)
for R = 3 consecutive iterations, indicating the end of simulation transience. However, nonlinear effects or
numerical instabilities may cause the comparison error to increase back above the threshold.

indicate the presence of a small nonlinear effect or noise in the training data that causes ROM prediction
error to increase. Another possibility is numerical instability related to performing DMD on a nearly constant
signal; if there are no dynamics in the data, then the snapshot matrix is ill-conditioned, leading to spurious
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results in the DMD fit. Longer training windows, data augmentation, or increasing the repetition R may
resolve these numerical issues. Accounting for nonlinearity in the model may be required for more complicated
effects.

Figures 7 and 8 provide full-field comparisons of the ROM to the true model for ion density and velocity,
respectively. The first row shows the final time prediction (t = 1 ms) for the ROM trained on the initial
window (w = 0), and the second row shows the final time prediction for the ROM at algorithm termination
(w = 44).
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Figure 7. Full-field comparison of the ROM final time prediction (t = 1 ms) of ion density to the true model.
The ROM predictions are shown when trained on the initial window (top row) and when trained on the final
window at algorithm termination (second row). The last column provides point-wise relative error between
the ROM and true model within the simulation domain, showing an order of magnitude reduction in error
from the initial window to the final window.

The comparisons provide further validation that ROMs trained only on steady-state data (as identified
by the sliding-window) perform better for long-time forecasting than when trained on transient initial data,
as evidenced by the order of magnitude reduction in error for the final window versus the initial window.
Furthermore, the algorithm terminates correctly after startup transients have relaxed to equilibrium. For
both ion density and velocity, the initial window ROM exhibits a slowly-growing, unstable mode, which
artificially increases the field values over time. Figure 5 also displayed this result as a growing thrust
prediction for the initial window (w = 0). Conversely, the final window ROM accurately predicts the
primary stable mode and the constant value of thrust, albeit with a slightly decaying mode that appears
to damp the field values over time. The off-channel-center region, characterized by radial beam expansion,
exhibits the largest errors in the simulation domain for both ion density and velocity. The presence of
nonlinear advection terms in the fluid PDEs likely explains this discrepancy and highlights the limitations
of the linear approximation in DMD.

Note that the present Hall2De configuration attempts to equilibrate the plasma to a constant (non-
oscillating) beam profile to achieve the target, constant discharge current. It would be considerably easier
in this case to detect end-of-transience by simply monitoring the discharge current and terminating when
its time-derivative falls below some threshold. A more interesting case might be a nontrivial equilibrium
like the breathing mode, or even long-term nonlinear effects. In this context, the present analysis serves
as a proof-of-concept for training robust ROMs for Hall thruster plasma simulations; future work includes
extending these methods to more complicated scenarios.
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Figure 8. Full-field comparison of the ROM final time prediction (t = 1 ms) of axial ion velocity to the true
model. The ROM predictions are shown when trained on the initial window (top row) and when trained on
the final window at algorithm termination (second row). The last column provides point-wise relative error
between the ROM and true model within the simulation domain, showing an order of magnitude reduction in
error from the initial window to the final window.

IV. Conclusion

This work developed an online method for robustly training data-driven reduced-order models (ROMs)
for Hall thruster plasma simulations. The linear dynamic mode decomposition (DMD) was applied within
a sliding-window algorithm to detect the end-of-transience in a fluid Hall thruster simulation. The sliding-
window method demonstrated the ability to accurately detect the equilibration of simulation startup tran-
sients using a non-intrusive, data-driven framework. Furthermore, the method produced a ROM with more
accurate long-term predictions compared to a ROM trained naively on initial simulation data. Acceleration
of the Hall thruster simulation was achieved by early termination of the expensive physics solver.

Primary challenges for the method include high-dimensionality and nonlinearity. As physical simulations
grow in size and complexity to capture the challenging, multiscale plasma dynamics in Hall thrusters, so
does the need for data compression and reduced-order modeling methods. A rank-truncated singular value
decomposition was applied within DMD to handle the high dimension in this work, but larger-scale simu-
lations may require more sophisticated compression methods. Nonlinearity stems from the PDEs governing
most physical phenomena and limits the performance of linear methods like DMD. Future work includes
accounting for nonlinear effects in the ROM and potentially integrating physics or structural constraints. A
related avenue to explore is feeding physics-constrained ROMs back into the underlying solver for greater
computational speedup.
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