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ABSTRACT

Bayesian inference is applied to calibrate and quantify prediction uncertainty in a coupled multi-component Hall thruster model.
The model consists of cathode, discharge, and plume submodels and outputs thruster performance metrics, one-dimensional plasma prop-
erties, and the angular distribution of the current density in the plume. The simulated thrusters include a magnetically shielded thruster
operating on krypton, the H9, and an unshielded thruster operating on xenon, the SPT-100, at pressures between 4:3�43 μTorr-Kr and
1:7�80 μTorr-Xe, respectively. After calibration, the model captures key pressure-related trends, including changes in thrust and upstream
shifts in the ion acceleration region. Furthermore, the model exhibits predictive accuracy to within 10% when evaluated on flow rates and
pressures not included in the training data and can predict some performance characteristics across test facilities to within the same range.
Compared to a previous model calibrated on some of the same data [Eckels et al., J. Electric Propul. 3, 19 (2024)], the model reduced pre-
dictive errors in thrust and discharge current by greater than 50%. An extrapolation to on-orbit performance is performed with an error of
9%, capturing trends in discharge current but not thrust. These findings are discussed in the context of using data for predictive Hall
thruster modeling in the presence of facility effects.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0283796

I. INTRODUCTION

Hall thrusters are the most widely flown type of electric
spacecraft propulsion device, but despite their popularity, they
remain challenging to model. Predictive models—those which can
accurately predict the plasma properties and global performance
features of a thruster from geometry and operating conditions
alone—are a longstanding goal of the Hall thruster modeling
community. Unfortunately, poorly understood physical effects have
to date prevented such efforts from reaching fruition. In addition
to the well-known problem of anomalous cross-field electron trans-
port,1 there are also many subtle and hard-to-model interactions
between a thruster and the vacuum facility in which it is tested.
These “facility effects” lead to thrusters performing differently
in conditions attainable in on-ground facilities than they do in
space.2–5 These effects complicate efforts to correlate ground test
data with in-space performance, increasing the expense of thruster

development and qualification. In the absence of physics-based
models for the aforementioned phenomena, engineering simulations
of Hall thrusters rely on phenomenological models with parameters
that must be calibrated to match data.6–9 These modeling choices
introduce uncertainty that should be quantified.

To address this challenge, we apply a multidisciplinary modeling
approach. We model the thruster-facility system in terms of a series
of modular components, which interact via a limited set of coupling
variables. We then apply Bayesian inference to calibrate the coupled
model against data. Once calibrated, we make probabilistic predic-
tions at operating conditions and facilities outside of those on which
the model was trained. There are several advantages to this approach.
First, the modularity allows new facility effects to be incorporated
without changing existing models. Models may likewise be upgraded
or replaced as improvements become available. Finally, our approach
places uncertainty quantification (UQ) in a central role. As calibration
is done probabilistically, we obtain not just point estimates but full
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distributions of model parameters and predictions of key quantities
of interest.

In our 2023 paper,10 we used a previous version of this model
to calibrate the SPT-100 thruster across background pressures.
While we obtained promising results using a surrogate, predictive
accuracy on held-out test data for the model itself was larger than
30%. We take several steps to address the limitations and outcomes
of the prior work, and we extend the analysis beyond the SPT-100
and to new operating regimes. Specifically, we make the following
changes: (1) the computational expense of the thruster discharge
model has been reduced by greater than 50%, which removes the
need of a surrogate model during the UQ analysis, (2) the Bayesian
likelihood has been updated to limit over-confidence in learned
model parameters, (3) the pressure-dependent models for neutral
ingestion, acceleration region shift, plume divergence angle, and
anomalous electron transport have been revised to better match
experimental trends and to better allocate model parameters.

These changes, particularly the updates to our modeling
assumptions, result in a model that agrees with experimental data
to within 10% for thrust and discharge current, with similarly low
errors observed for the ion velocity, cathode coupling voltage, and
plume ion current density. These results improve upon our previous
work, in particular, with respect to thrust and discharge current
where the model test errors were 30% and 53%, respectively.10

We additionally simulate a magnetically shielded thruster and
demonstrate similar performance using less data.

This paper is organized as follows. First, in Sec. II, we describe
the component models, the experimental data, and the methods we
apply to calibrate the model. In Sec. III, we demonstrate that our
coupled system model exhibits improved prediction accuracy and
can extrapolate to a held-out validation dataset. Next, in Sec. IV, we
comment on the applicability of our results to Hall thruster engi-
neering design and consider the limitations of our approach and
possible avenues for improvement. Finally, in Sec. V, we summarize
our findings.

II. METHODS

In this section, we describe the models in the coupled frame-
work, the experimental data, the calibration procedure, and the
uncertainty quantification approach.

A. Model

The Hall thruster system model, depicted in schematic form
in Fig. 1, comprises an analytic cathode coupling model,11 a one-
dimensional fluid code for the main thruster discharge,12 and an
analytic model for the expansion of the plume into a vacuum
chamber.13 We use these models to predict five quantities of inter-
est (QoIs): thrust, discharge current, cathode coupling voltage,
axially-resolved 1D ion velocity, and the plume ion current density.

As illustrated in Fig. 1, each component model influences dif-
ferent QoIs. The cathode model computes the cathode coupling
voltage—the voltage needed to extract cathode electrons into the
Hall thruster discharge plasma. This voltage determines the effec-
tive potential drop applied to the thruster model. The thruster
model then outputs the 1D axial distribution of plasma properties
in the thruster discharge channel and near field plume, such as the

electron temperature and ion velocity, the discharge current, ion
current, and an “uncorrected” thrust. These last two outputs pass to
the plume component, which models the angular distribution of the
ion current density at multiple distances downstream of the thruster.
This distribution is then analyzed to extract the divergence efficiency,
which is used to “correct” the thrust to account for divergence losses.

Each of the component models has a functional dependence
on the facility background pressure, enabling the coupled system to
capture a wide range of pressure-dependent phenomena. We define
the system model as

y ¼ f (x) ¼ [f1(x), f2(x), . . . , fQ(x)], (1)

where x and y are vectors containing all model inputs and outputs,
respectively, and Q ¼ 5 is the number of QoIs. We split the model
inputs x into operating conditions d and model parameters θ.
Operating conditions represent the experimental conditions at which
the data were obtained. These may be known to within some inher-
ent, irreducible uncertainty (aleatoric uncertainty) due to measure-
ment precision or noise. In contrast, model parameters are unknown
a priori and have uncertainty that can be reduced by calibrating with
data (epistemic uncertainty).

Both θ and d can be further broken down by component,
with subscripts C, T , and P denoting cathode, thruster, and plume,
respectively. Tables I and II list each component’s inputs and
outputs. We use Bayesian inference, described further in Sec. II C,
to calibrate the system against data and characterize the posterior
distribution of the parameter θ. After calibrating, we use a Monte
Carlo analysis of model predictions to understand the relative mag-
nitudes of the aleatoric and epistemic uncertainties. This procedure
is described further in Sec. II D.

1. Cathode coupling model

The cathode coupling model, developed in Ref. 11, predicts the
cathode coupling voltage, Vcc, as a function of facility background
pressure PB using the following physically derived relationship:

Vcc ¼ Vvac þ Tec log 1þ PB
PT

� �
� Tec

PT þ P�

� �
PB, (2)

where Vvac is the expected coupling voltage at vacuum, Tec is the
effective cathode electron temperature, P� is the pressure at which
Vcc stops increasing, and PT is the base pressure. We treat these four
quantities as epistemic model parameters.

2. Thruster model

We use the open-source 1D axial fluid Hall thruster code
HallThruster.jl12 to model the thruster discharge. This code models a
quasineutral, multi-species plasma of neutrals, ions, and electrons
subject to an accelerating potential. HallThruster.jl solves a continuity
equation for the neutrals, both continuity and momentum equations
for ions, and an electron energy equation It then models electrons
as an inertialess fluid and computes the electrostatic potential and
electron current density using charge conservation and the gener-
alized Ohm’s law/quasineutral drift diffusion approximation.7,14

We consider only singly charged ions in the present work,
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although the code supports up to three. HallThruster.jl uses Vcc

calculated by cathode coupling model as the electric potential at
the right (cathode) boundary. The model outputs thrust and ion
current, which are passed to the plume model, as well as discharge
current and many spatially resolved plasma properties, including the
axial ion velocity.

HallThruster.jl cannot self-consistently resolve instability-
induced cross-field electron transport. Instead, the user specifies a
spatially varying profile for the anomalous electron collision fre-
quency. We employ a four-parameter model of the following form:

Ω�1
anom ¼ αanom 1� βanom exp � ẑ � zanom

Lanom

� �2
" # !

, (3)

where Ωanom ¼ ωce=νanom is the anomalous electron Hall parameter,
νanom is the anomalous electron collision frequency, ωce is the elec-
tron cyclotron frequency, and ẑ is the axial coordinate normalized by
the discharge channel length. The transport obeys the Bohm scaling
(νanom � ωce) with a localized reduction in transport following a
Gaussian profile at a specified location. This form captures key

features seen in calibrated profiles used in other codes9 while
keeping the number of parameters low. The reduction in trans-
port increases the peak electric field, producing the steep ion
acceleration profiles observed in experimental data. The parame-
ters of this model—αanom, βanom, zanom, and Lanom—represent the
maximum inverse Hall parameter and the scale, location, and
width of the transport barrier, respectively. The latter two param-
eters are non-dimensionalized by the discharge channel length
to increase the transportability of parameters between thrusters.
We chose this parameterization so that each parameter is of the
order O(1) and to aid interpretability.

As given, this model has no pressure dependence and thus
would be unable to capture the observed upstream shift in the ion
acceleration region in response to increasing back-pressure.15 To
account for this, we introduce a phenomenological model for this
displacement modified from the one in our previous work,10

Δz(PB) ¼ ΔzanomLch
1

1þ e�2(PB=P0�1)
� 1
1þ e2

� �
: (4)

Here, PB is the background pressure and Δz(PB) describes the

FIG. 1. Overview of the coupled Hall thruster system model, showing the connection between inputs, component models, and output QoIs. Input and output variables are
defined in Tables I and II, respectively.
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magnitude of the upstream shift. The parameters of this model are
Δzanom and P0, which represent the magnitude and center of the
shift with respect to background pressure. Equation (4) is a logistic
equation, which captures the intuition that the anomalous transport
profile should not move arbitrarily far upstream or downstream
as background pressure approaches large or small values. In prac-
tice, we have found that P0 ¼ 25 � 10�6 Torr produces good
agreement to data for several thrusters, so we leave only Δzanom
as a free parameter. This model is implemented by setting
ẑ ¼ (z0 þ Δz(pB))=Lch in Eq. (3), where z0 is the un-shifted axial
coordinate. We show in Fig. 2 the shape of the anomalous trans-
port curve and the effect of the pressure shift model.

We calibrate two additional parameters in addition to those
controlling anomalous transport: a neutral ingestion scale factor fn
and a wall loss scale factor cw. Hall thrusters typically exhibit

increased thrust at high background pressures, in part, due to the
ingestion of background neutrals, which serve as extra propel-
lant.16,17 We calculate the amount of ingested neutral propellant as
the one-sided flux of a stationary Maxwellian population of neu-
trals of a specified background pressure and temperature across the
exit plane of the thruster. On its own, this model may under-
predict the true degree of neutral ingestion,17 so we multiply the
ingested neutral flux by fn to better match experiments. Second, the
wall loss scale parameter, cw, scales the plasma edge-to-center
density ratio from its base value of 0.5 when performing electron
sheath loss calculations. These wall losses are the main method by
which HallThruster.jl distinguishes between magnetically shielded
thrusters like the H9 and unshielded thrusters like the SPT-100.
In shielded thrusters, we assume the wall temperature equals the
anode temperature and we disable ion wall losses, while in

TABLE I. Inputs to the coupled thruster-cathode-plume system. The abbreviations C, T, and P refer to the Cathode, Thruster, and Plume component models, respectively.
Pressures measured in Torr have been corrected for the respective propellant and should be understood as Torr-Xe or Torr-Kr depending on the gas used. U(x, y) denotes a
uniform distribution between x and y. N ( � , x%) denotes a normal distribution about a nominal value with a standard deviation of x%. Variables with the (10x) notation
denote a log-uniform distribution.

Symbol Description Units Components Type Distribution

Vd Discharge voltage V C, T Operating N ( � , 2%)
PB Background pressure Torr C, T, P Operating N ( � , 5%)
_ma Anode mass flow rate kg s−1 T Operating N ( � , 2%)
Tec Cathode electron temperature eV C, T Parameter U(1, 6)
Vvac Vacuum coupling voltage V C Parameter U(0, 60)
PT Base pressure μTorr C Parameter U(20, 200)
P* Turning point pressure μTorr C Parameter U(1, 100)
αanom Base inverse Hall parameter … T Parameter U(0, 1)
βanom Anomalous transport barrier scale … T Parameter U(0, 1)
zanom Anom. transport barrier location … T Parameter U(0:75, 1:5)
Lanom Anom. transport barrier width … T Parameter U(0, 0:5)
Δzanom Anom. pressure axial shift scale … T Parameter U(0, 0:5)
un Neutral axial speed m/s T Parameter U(100, 500)
cw Electron wall loss scale … T Parameter U(0:5, 1:5)
fn Neutral ingestion scale … T Parameter U(1, 10)
c0 Ratio of main to scattered currents … P Parameter U(0, 1)
c1 Ratio of main to scattered div. angles … P Parameter U(0:1, 0:9)
c2 Slope of div. angle vs pressure rad Pa−1 P Parameter U(� 15, 15)
c3 Intercept of div. angle vs pressure rad P Parameter U(0:2, π=2)
c4 (10

x) Slope of neutral density vs PB m−3 Pa−1 P Parameter U(18, 22)
c5 (10

x) Intercept of neutral density vs PB m−3 P Parameter U(14, 18)

TABLE II. Outputs of the coupled cathodethruster–plume system.

Symbol Description Units Component Coupling

Vcc Cathode coupling voltage V Cathode Cathode–thruster
T Uncorrected thrust N Thruster Thruster–plume
IB Ion current A Thruster Thruster–plume
ID Discharge current A Thruster …
uion Axial singly charged ion velocity m/s Thruster …
Tc Corrected thrust N Plume …
jion Plume ion current density A/m2 Plume …
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unshielded thrusters, the wall temperature equals the channel
average temperature and ion wall losses are accounted for.

All simulations in this work use a uniform grid of 100 cells and
a domain length of three thruster channel lengths. For the SPT-100
operating at 300 V and 5.0mg/s, doubling the number of cells or the
domain length changes the discharge current by less than 0.1 A and
the thrust by less than 5mN, with the precise and direction of
the change depending on the specific simulation parameters used.
We simulate one millisecond of thruster operation and average all
QoIs over the last 500 μs of the simulation. For breathing mode fre-
quencies above 10 kHz, this time is sufficient to allow the discharge
to converge to a stationary oscillation or steady state after an initial
transient. With these settings, a single HallThruster.jl simulation
takes about 6 s on a single core of an Intel Xeon Gold 6154 CPU
(the exact time varies per-run due to adaptive time-stepping).

To summarize, the changes to the thruster model from our
previous work are that the anomalous transport and pressure shift
models are more expressive, and that we have included additional
wall loss and neutral ingestion parameters. In principle, these
changes should allow the model to better capture observed trends
in facility effects and to better generalize over operating conditions.
Additionally, a combination of internal code optimizations and
coarsened grid resolution has reduced the runtime by nearly a
factor of ten, making it practical to perform Bayesian inference
directly on the model without a surrogate. To assess the impact of
the modeling changes from the inference changes, we report in
Appendix B results obtained by calibrating the model of our previ-
ous work using the inference procedure of the present work.

3. Plume model

We employ the semi-empirical plume expansion model used
in Refs. 10 and 13. This model treats the ion current density in the
plume (jion) as composed of three populations—main beam ions,

ions scattered by inelastic collisions, and slow ions produced by
charge-exchange collisions with neutrals,

jion ¼ jbeam þ jscatter þ jcex: (5)

The first two populations follow Gaussian angular distributions
with characteristic divergence angles, while the last expands uni-
formly in a hemisphere. The current density of each population
decays proportionally to the inverse square of the distance from the
thruster exit plane.

Given the current density jion(r, f) as a function of distance r
from the thruster exit plane and angle f from thruster centerline,
we compute the beam divergence angle fd from the ratio of the
axial and total ion beam currents,18

fd ¼
IB,z
IB

¼ 2πr2
Ð π=2
0 jion(r, f)cos(f)sin(f)dfÐ π=2
0 jion(r, f)cos(f)df

: (6)

Here, f ¼ 0 indicates the thruster centerline. We then “correct” the
thrust from the thruster model (T ! Tc) according to

Tc ¼ Tcos(fd), (7)

which accounts for the loss in axially directed thrust due to beam
divergence. This differs from our previous work,10 in which we used
the “uncorrected” thrust directly and consequently over-predicted
the true measured thrust.

B. Experimental data

We study two thrusters in this paper—the SPT-100 and the
H9. The SPT-100, shown in Fig. 3(a), is a widely tested
1.5 kW-class Hall thruster developed by Fakel in Russia.16 Due to
its age and the availability of its geometry and magnetic field con-
figuration, it is often used for model development activities. The
H9 [Fig. 3(b)] is a magnetically shielded 9 kW-class Hall thruster
developed in collaboration between the University of Michigan
(UM), the Air Force Research Laboratory, and the Jet Propulsion
Laboratory.19

We summarize the experimental datasets used in this study
for both thrusters in Table III, including the measurement QoIs,
the number of unique operating conditions (sets of Vd , PB, _ma ) in
each dataset, and the original sources of the data. Datasets catego-
rized as “training” are used in the calibration procedure to tune the
model parameters. We additionally include “test” datasets which
are not seen during training and use these to assess how well the
model generalizes beyond the training data. The SPT-100 data-
sets15,16,20 were all obtained using xenon propellant and all H9
datasets used krypton.21,22

The SPT-100 datasets from Ref. 20 include performance mea-
surements (i.e., coupling voltage, thrust, and discharge current) and
angularly resolved measurements of the ion current density in the
plume at a radius of one meter from the thruster exit plane, com-
prising 15 total operating conditions across two facilities (L3-Harris
and Aerospace Corporation). The additional training dataset from
Ref. 15 includes the discharge current and spatially resolved axial
ion velocity at three conditions. The test dataset from Ref. 16

FIG. 2. Notional plot of the anomalous electron transport model used in this
work, illustrating the key parameters in Eq. (3) and the pressure shift from Eq. (4).
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includes global performance metrics (thrust and discharge
current) at a diverse range of flow rates and background pressures.
Finally, the SPT-100 test dataset from Ref. 3 contains measure-
ments from two Russian Express-A satellites, both on the ground
and on orbit. The thruster ran at 300 V on the ground and 310 V
on orbit. The mass flow rate for the on-orbit data was not mea-
sured and was instead estimated by the authors based on previous
SPT-100 experiments. We describe this dataset in more detail in
Appendix A.

The H9 data in Table III originates from a 2024 test campaign
to compare the performance of the same thruster at two different

test facilities, namely, Vacuum Test Facility 2 at the Georgia
Institute of Technology (GT) and the Large Vacuum Test Facility at
the University of Michigan. The UM data21 spans eight background
pressures: five of these conditions (the “velocity” dataset in
Table III) include laser-induced fluorescence measurements of ion
velocity21 and three (the “plume” dataset) contain both cathode
coupling voltage and plume ion current density measurements at
radii of 1.16, 1.32, 1.32, and 1.64 m.22 The GT data23 contains three
operating conditions, again differing mainly in background pres-
sure, and includes thrust, ion current density measurements at a
distance of one meter, and discharge current. For all H9 datasets,

FIG. 3. (a) The SPT-100 Hall thruster. (b) The H9 Hall thruster operating on krypton in the Large Vacuum Test Facility at the University of Michigan.

TABLE III. Summary of the experimental training and test datasets for the SPT-100 and H9 thrusters in this study. The measurement quantities of interest (QoIs) are listed
along with the number of unique operating conditions (sets of Vd , PB, _ma ) for each dataset. Pressures measured in Torr are corrected for the gas used in the respective
dataset. Nomenclature for the QoIs is provided in Table II.

Thruster Gas Summary Reference QoIs Conditions Pressure (μTorr) Category

SPT-100 Xe Diamant et al. 2014, L3 20 Vcc, ID, Tc, jion 8 1.67–55.1 Training
SPT-100 Xe Diamant et al. 2014, Aerospace 20 Vcc, ID, Tc 7 3.45–73.7 Training
SPT-100 Xe Macdonald-Tenenbaum et al. 2019 15 ID, uion 3 15.0–50.0 Training
SPT-100 Xe Sankovic et al. 1993 16 ID, Tc 119 2.48–55.0 Test
SPT-100 Xe Manzella et al. 2001 3 ID, Tc 2 0.02–2.00 Test
H9 Kr UM 2024, Plume 22 Vcc, ID, jion 3 4.48–43.4 Training
H9 Kr UM 2024, Velocity 21 ID, uion 5 4.33–30.0 Training
H9 Kr GT 2024 23 ID, Tc, jion 3 8.70–22.1 Test
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the thruster operated at a nominal discharge current of 15 A and a
discharge voltage of 300 V.

C. Calibration procedure

We calibrate the epistemic model parameters θ against experi-
mental data using Markov Chain Monte Carlo (MCMC) to gener-
ate samples of the epistemic parameters according to their
posterior distribution. This is given by Bayes’ rule,

p(θ j ye) ¼
1
Z
p(ye j θ)p(θ),

where ye is a vector of all experimental data at all operating condi-
tions, p(θ j ye) is the posterior distribution of all the epistemic
parameters given the data, p(ye j θ) is the likelihood of the experi-
mental data given the parameters and the model, p(θ) is the prior
distribution, representing the state of knowledge about the model
parameters prior to observing any data, and Z is a normalizing
constant.

The prior distributions for each parameter are listed in
Table I, where we have used uninformative uniform distributions
over the expected ranges for each parameter and we assume all
parameters are independent. For simplicity, we neglect the aleatoric
uncertainty in the operating conditions d during calibration, i.e.,
we calibrate the epistemic model parameters θ assuming the oper-
ating conditions take on their mean values in Table I. Treating the
aleatoric uncertainty robustly during calibration would require us
marginalize over the aleatoric variables at each MCMC sampling
step. This can be done, for instance, using pseudo-marginal
MCMC,24 but would require several model evaluations per sample,
significantly increasing the cost of inference. We justify this choice
by noting that the aleatoric variables are distributed according to
narrow Gaussian distributions, for which a single point sample at the
mean provides a good (albeit potentially biased) approximation. In
Sec. II D, we discuss our approach to quantifying the impact of alea-
toric uncertainty in our predictions; for now, we remark that our
method likely underestimates it.

To obtain the likelihood of data given the epistemic parame-
ters, we assume the measurement noise of each observation of each
quantity of interest is independent. For each QoI, nq represents the
number of operating conditions which have data for that QoI and
mq is the length of the observation of that QoI. For the cathode
coupling voltage, discharge current, and thrust, mq ¼ 1 since we
only observe a single number, but for ion velocity and ion current
density, mq will be O(10)–O(100) as these QoIs are spatially
resolved. Under this formulation, the likelihood is written as

p(ye j θ) ¼
YQ
q¼1

p(yeq j θ) ¼
YQ
q¼1

Ynqmq

j¼1

p y(j)eq j θ
� �

,

where y(j)eq represents the jth observation of the qth QoI and Q ¼ 5
is the number of QoIs. The outer product assumes independence
across quantities of interest, and the inner product assumes inde-
pendent observations within and across an operating conditions.
We next assume that the error can be modeled using additive
Gaussian noise. Next, we need to assume some form of error

model between the observed model and the predicted value.
Specifically, we model the predicted observation of the qth QoI at
the jth operating condition as

y(j)eq ¼ fq θ, d(j)eq

� �
þ ξq, ξq � N 0, σ2

q

� �
,

where d(j)eq represents the operating conditions associated with a
specific experimental data point, ξq represents a stochastic model
for the error between the model prediction and the observation,
and σ2

q is the variance of this error, which may be chosen per-QoI.
Under this model, we have

p y(j)eq j θ
� �

¼ N fq θ, d(j)eq

� �
, σ2

q

� �
:

The log-likelihood is then,

log p(ye j θ) ¼
XQ
q¼1

Xnqmq

j¼1

� log
ffiffiffiffiffi
2π

p
σq

� �
�

y(j)eq � fq θ, d(j)eq

� �� �2
2σ2

q

¼
XQ
q¼1

�nqmq log
ffiffiffiffiffi
2π

p
σq

� �
�
Xnqmq

j¼1

y(j)eq � fq θ, d(j)eq

� �� �2
2σ2

q

2
64

3
75:

As only the second term depends on θ, we can fold the summation
over the first term into a constant C, which drops out during
MCMC sampling or optimization, giving

log p(ye j θ) ¼ � 1
2

XQ
q¼1

1
σ2
q

Xnqmq

j¼1

y(j)eq � fq θ, d(j)eq

� �� �2
þC:

As written, this likelihood over-weights QoIs like ion velocity
which have tens of points per operating condition and underweight
global properties like thrust. To mitigate this, we express the point-
wise standard deviation σq in terms of an average relative error
across a whole dataset,

σ2
q ¼ cqγ

2
q,

where γq represents a relative measurement error and cq is a refer-
ence magnitude. We use the data to set cq based on the squared L2
norm of the vector of observations of q, averaged over the number
of operating conditions in which q was observed,

σ2
q ¼

ky(j)eqk2
nq

γ2q,

where the kyeqk2 ¼
Pmqnq

j (y(j)eq )
2
. Using this choice, the log likeli-

hood becomes

log p(ye j θ) ¼ � 1
2

XQ
q¼1

nq
γ2q

kyeq � fq(θ, deq)k2
kyeqk2

þ C: (8)

The interpretation of γq=
ffiffiffiffiffi
nq

p
is as an averaged relative L2 norm of

the difference between the data and the model output in QoI q
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across all operating conditions. In the results that follow, we choose
γq=

ffiffiffiffiffi
nq

p ¼ 2:5% for all QoIs, which is equal to or lower than to
the estimated relative measurement error for all quantities except
the cathode coupling voltage and thrust of the SPT-100, for which
we instead set γq=

ffiffiffiffiffi
nq

p ¼ 1%.

With this likelihood in hand, we employ MCMC (specifically
the Delayed Rejection Adaptive Metropolis algorithm25) to draw
50 000 samples from the posterior distribution. We discard the first
half of the drawn samples as burn-in and perform our analysis
using the second half. We calibrate each thruster separately, giving
each its own posterior parameter distribution. As this likelihood
differs somewhat from that used in our previous paper,10 we assess
the impact of this change independent of differences in our model-
ing assumptions and parameterizations in Appendix B. There, we
repeat the main analysis of this work using the model of the previ-
ous work in concert with the new likelihood, which can be com-
pared with the main results obtained in Secs. III A–III E.

D. Uncertainty quantification

After obtaining samples from the posterior parameter distribu-
tion, we then quantify the uncertainty in model predictions when
comparing to experimental data. We wish to characterize the impact
of both epistemic and aleatoric uncertainty in our predictions: the
epistemic uncertainty is obtained by propagating only samples of
model parameters θ through the model, and total uncertainty
(aleatoricþ epistemic) is obtained by sampling the aleatoric uncer-
tainties in the operating conditions d. As discussed previously, this
approach likely underestimates the aleatoric uncertainty but improves
our method’s computational efficiency. In Sec. IV B, we discuss the
effects of this choice in further detail.

Concretely, we adopt the following procedure. For epistemic
uncertainty, we draw N samples from the posterior parameter
distribution p(θ j ye) obtained by MCMC (we take N ¼ 1000
throughout our analysis), keeping the aleatoric variables at their
nominal values. For the total uncertainty, we draw N samples from
both p(θ j ye) and p(d) (the prior distribution of the aleatoric vari-
ables, as given in Table I). In both cases, we then evaluate the
model at each input vector x ¼ (θ, d) and compute statistics (such
as the mean and variance) on the model outputs. Unless otherwise
noted, we present in our results the median prediction of each QoI
as well as a 90% credible interval of predictions drawn from both
distributions. The difference between the epistemic uncertainty
bands and the total uncertainty bands gives an estimate of the alea-
toric uncertainty compared to epistemic uncertainty.

III. RESULTS

In this section, we first examine the posterior parameter distri-
butions obtained by the Bayesian calibration procedure before
showing the performance on training datasets. We then validate
the model’s generalization on the independent test datasets and
attempt a preliminary extrapolation of the SPT-100 data to orbit.
Next, we analyze the anomalous transport curves inferred by the
model and conclude by assessing the sensitivity of the model to the
calibration parameters.

A. Calibration

In this section, we present the results of the Bayesian inference
procedure described in Sec. II C. We list for the SPT-100 and H9,
respectively, in Tables IV and V, each calibration parameter, their
prior distributions, and several statistics of their posterior (post-
calibration) distributions.

We find that the posterior distributions of most parameters are
narrowed from the prior distributions, indicating that the data is infor-
mative for reducing the epistemic uncertainty while not being so restric-
tive as to produce point estimates. There are a few parameters, however,
whose posterior distributions span nearly the same range as their priors:

1. The wall loss scale parameter (cw) for the H9: The wall loss
model’s behavior for shielded thrusters described in Sec. II A 2
reduces the wall interactions to the point that cw has little effect
on the likelihood for this thruster

2. Cathode parameters (especially, the electron temperature, Tec,
and base pressure, PT ) for the SPT-100: The closeness of the
cathode data to a flat value of Vcc ¼ Vvac means we are less suc-
cessful in reducing the uncertainty in these parameters.

3. The neutral ingestion scale parameter (fn) for both thrusters:
While this parameter was intended to improve the model’s sensi-
tivity to changing background pressure, in practice, it is not able to
be inferred with precision. Instead, the coupling between thruster
and plume models means that increased plume divergence at lower
pressure is sufficient to replicate the trends in the thrust data.

Additionally, the inferred distributions of some parameters dif-
fered between thrusters. The median value of the anomalous pressure
shift parameters, Δzanom, was nearly twice as high for the SPT-100
than for the H9, accurately reflecting the difference in the magnitude
of the upstream acceleration region shift with pressure in the two
thrusters’ training datasets. Similarly, the anomalous collision fre-
quency scale, αanom was twice as high for the H9 as for the SPT-100,
although for both thrusters, it varied across at least a factor of two.
Finally, c2, which determines how the divergence angle trends with
background pressure was found to have an opposite sign for the H9
as in the SPT-100. For the SPT-100, it is uniformly negative, indicat-
ing a reduction in plume divergence at high pressure. By contrast,
for the H9 the median value is positive, leading to the opposite
trend. These inferred parameters reflect real trends in the data and
indicate the success of the calibration procedure.

Appendix C shows the single and two-parameter marginals
of the posterior parameter distributions for each component model
and thruster. In the joint distributions, we observe that some param-
eters (zanom and Δzanom, αanom and Lanom, c0 and c3, and for the H9,
Vvac and PT) are highly correlated. These correlations are indicative
of the fact that some parameters influence the likelihood in similar
ways and may trade off against one another. For instance, both αanom

and Lanom control the total electron current and thus the discharge
current, the former by scaling down the anomalous mobility globally,
and the latter by broadening the region of low anomalous mobility.
As such, at higher values of αanom, the model requires a value of
Lanom to maintain the same discharge current and thus observe a
positive correlation between these variables. Luckily, each of our
parameters are identifiable, as each of marginal distributions display
clear maxima despite the occasional parameter correlations.
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1. SPT-100

In Figs. 4, 5, and 6, we show how the model predictions of
cathode coupling voltage, discharge current, and thrust differ under
the prior parameter distribution and the calibrated posterior distri-
bution. In these plots, we show the median model output of each
QoI and the 90% credible interval (CI). The interval contains both

aleatoric and epistemic uncertainties in the prior plots, while in the
posterior plots, we show both separately. For each QoI, the uncer-
tainty is dramatically reduced under the posterior, and the median
prediction moves closer to the experimental data.

The cathode coupling voltage is well-recovered under the poste-
rior, including the non-monotonic trend with increasing background

TABLE IV. Statistics of the 1D marginal posteriors of the SPT-100 parameters. Variables with the (10x) notation indicate a log-uniform distribution.

Posterior

Variable Prior Min 5th‰ 50th‰ 95th‰ Max SD

PT U(10, 100) 10 14.47 48.72 93.63 99.95 24.81
P* U(10, 200) 10.04 25.60 64.85 140.12 197.95 35.27
Te U(1, 6) 1 1.17 2.92 4.85 6 1.18
Vvac U(0, 60) 29.84 30.87 31.75 32.40 32.88 0.46
βanom U(0, 1) 0.95 0.97 0.99 1 1 0.01
zanom U(0:75, 1:5) 1 1.06 1.14 1.20 1.26 0.04
αanom U(0, 1) 0.02 0.04 0.06 0.09 0.10 0.01
Δzanom U(0, 0:5) 0.08 0.20 0.33 0.45 0.5 0.08
Lanom U(0, 0:5) 0.25 0.34 0.43 0.49 0.5 0.05
cw U(0:5, 1:5) 0.5 0.51 0.67 1.25 1.50 0.23
fn U(1, 10) 1 1.40 5.23 9.53 10 2.59
un U(100, 500) 157.59 195.57 278.11 378.17 448.28 55.07
c0 U(0, 1) 0.67 0.71 0.76 0.79 0.82 0.03
c1 U(0:1, 0:9) 0.26 0.29 0.32 0.36 0.41 0.02
c2 U(� 15, 15) −15 −14.52 −12.36 −8.88 −5.32 1.77
c3 U(0:2, π=2) 0.2 0.2 0.21 0.22 0.24 0.01
c4 (10

x) U(18, 22) 20.02 20.15 20.33 20.45 20.55 0.10
c5 (10

x) U(14, 18) 14 14.03 14.33 15.48 16.88 0.50

TABLE V. Statistics of the 1D marginal posteriors of the H9 parameters. Variables with the (10x) notation indicate a log-uniform distribution.

Posterior

Variable Prior Min 5th‰ 50th‰ 95th‰ Max SD

PT U(1, 100) 1 1.22 3.18 10.89 40.03 3.51
P* U(10, 200) 41.24 42.47 45.33 46.86 48.79 1.33
Te U(1, 6) 3.03 4.18 5.4 5.95 6 0.57
Vvac U(0, 60) 17.44 18.50 21.94 26.47 30 2.49
βanom U(0, 1) 0.94 0.96 0.98 0.99 1 0.01
zanom U(0:75, 1:5) 1 1.04 1.07 1.1 1.15 0.02
αanom U(0, 1) 0.04 0.07 0.13 0.18 0.21 0.03
Δzanom U(0, 0:5) 0.01 0.06 0.18 0.29 0.37 0.07
Lanom U(0, 0:5) 0.19 0.29 0.43 0.49 0.5 0.06
cw U(0:5, 1:5) 0.5 0.64 1.19 1.48 1.5 0.25
fn U(1, 10) 1 1.37 3.85 8.87 10 2.25
un U(100, 500) 217.09 245.48 268.86 302.43 322.44 17.7
c0 U(0, 1) 0.03 0.15 0.32 0.64 0.77 0.15
c1 U(0:1, 0:9) 0.1 0.17 0.39 0.69 0.85 0.17
c2 U(� 15, 15) −9.65 −4.81 2.71 14.51 15 6.68
c3 U(0:2, π=2) 0.23 0.26 0.32 0.35 0.37 0.02
c4 (10

x) U(18, 22) 18.52 19.23 20.15 20.33 20.44 0.34
c5 (10

x) U(14, 18) 14 14.02 14.26 14.98 15.63 0.31
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pressure. However, the predicted trend is more subtle than the exper-
imental one and peaks at a different pressure. This contrasts with
our previous work, which was able to more tightly reduce the uncer-
tainty in the cathode parameters and thus better capture the trend in
the data. This is likely a result of the likelihood used in this work,
which prioritized relative error over the entire dataset rather than the
sum of pointwise absolute errors as in the previous work. We
observed this outcome as well in the calibrated cathode parameters
in Table IV, where overall relative error is greatly reduced by fine-
tuning the Vvac parameter, but the (PT , P�, Tec) parameters that
characterize the more subtle trends with pressure contribute less to
the likelihood and so were calibrated to a much lesser extent. It is
possible that given additional time, the calibration procedure may
have fine-tuned these parameters more to better fit the experimental

trend. We recover the correct flat trend in discharge current with
respect to background pressure in Fig. 5, though the 4.25 A points
from Ref. 15 lie slightly outside of the CI. The posterior predictive CI
bounds also encompass the experimental thrust and exhibit the
correct trend with pressure, i.e., slightly increasing with background
pressure. For cathode coupling voltage and discharge current, the
epistemic uncertainty is much larger than the aleatoric uncertainty,
while for thrust the aleatoric uncertainty is equal to or greater than
the epistemic uncertainty. This likely stems from the fact that the
thrust is more directly impacted by [voltage] and flow rate than the
discharge current and cathode coupling voltage.

In Fig. 7, we compare the simulated ion velocity to measure-
ments from Ref. 15. Our model captures the upstream shift in ion
acceleration region with increasing background pressure as well as

FIG. 4. (a) Prior, (b) posterior, and (c) zoomed-in posterior predictions of the SPT-100’s cathode coupling voltage as a function of background pressure compared to data
from Ref. 20.

FIG. 5. (a) Prior, (b) posterior, and (c) zoomed-in posterior predictions of the SPT-100’s discharge current as a function of background pressure compared to data from
Refs. 15 and 20.
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the maximum slope of the ion velocity profile. In the data, the ion
velocity profile at PB ¼ 35 μTorr actually sits about 1 mm further
upstream than that at PB ¼ 50 μTorr. The authors of the original
paper noted that this was unexpected, as in most thrusters the
acceleration region shifts monotonically upstream with pressure. As
our model also assumes monotonicity, we do not capture this
feature of the data. The main discrepancies with data occur
upstream of the acceleration region, inside of the discharge channel
(z=Lch , 1), where the model overestimates the ion velocity. The

reason for this overestimate is unclear, but likely has to do with the
large ion backflow region (where uion , 0) seen in the data, which
is unusual compared to ion velocity measurements on other thrust-
ers. As an example of the level of model uncertainty typical for
these predictions, we show in Fig. 7(b) the uncertainty bounds for
the prediction at 35 μTorr.

In Fig. 8, we show the plume ion current density profile at a
distance of 1 m from the thruster exit plane, compared to data from
Ref. 20. For visual clarity, we only show three representative

FIG. 6. (a) Prior, (b) posterior, and (c) zoomed-in posterior predictions of the SPT-100’s thrust as a function of background pressure compared to data from Ref. 20.

FIG. 7. (a) Median of posterior predictions of the SPT-100’s axial ion velocity at three background pressures, compared to data from Ref. 15. (b) Median posterior predic-
tion and uncertainty in ion velocity at PB ¼ 35:0 μTorr.
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pressures out of the eight in the dataset. The model agrees with the
data well, especially at angles less than 60�. At larger angles, the
absolute errors remain low while the relative error increases; this
effect is magnified visually by the use of the logarithmic y-axis
scale in Fig. 8. The likelihood used during calibration implicitly
weights points with larger magnitudes higher than those with lower
magnitudes. As very small current densities at large angles do not
contribute much to the divergence angle integrals in Eq. (6), this
choice prioritizes fitting the parts of the ion current density curve
with a direct impact on the observable QoIs.

2. H9

In Figs. 9, 10, and 11, we show the prior and posterior predic-
tions of the cathode coupling voltage, discharge current, and thrust
from the H9. The model captures the monotonic trend in cathode
coupling with pressure, and has reduced the uncertainty in the dis-
charge current to a narrow band around 15 A. In contrast to the
SPT-100 results, we predict a decreasing trend in thrust at high
background pressures. We return shortly to a discussion of possible
reasons for this trend.

FIG. 8. (a) Median of posterior predictions of the SPT-100 plume ion current density distribution at r ¼ 1m compared to data from Ref. 20. (b) Median posterior prediction
and uncertainty in ion current density at r ¼ 1m for the PB ¼ 15:80 μTorr condition.

FIG. 9. (a) Prior, (b) posterior, and (c) zoomed-in posterior predictions of the H9’s cathode coupling voltage as a function of background pressure compared to data from
Ref. 22.
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In Fig. 12, we plot ion velocity curves for the H9 at three rep-
resentative pressures. We observe both good agreement between
the model and data as well as low prediction uncertainty. In partic-
ular, the final exit velocity, the pressure-dependent acceleration
region shift, and the steepness of the acceleration profile are all cap-
tured accurately.

The current density dataset for the H9 includes measurements
at multiple background pressures, each, in turn, taken at several
distances from the thruster. For visual clarity, we first show results
at a single distance and multiple pressures, followed by results at
multiple distances and a single pressure. Figure 13(a) shows the ion
current density curves at distance of 1.32 m from the thruster and
multiple pressures. As our chosen model form requires that the ion
current density peak at 0� and decay monotonically with an
increasing angle, we are unable to capture the observed peak in the
data at 7� off-axis. However, we successfully reproduce both the

maximum current density and the trends with background pressure
for angles up to 40�. As in the SPT-100 data, this departure from
the data at larger angles is reflected in Fig. 13(b) as increased rela-
tive uncertainty. Unlike in the SPT-100, the divergence angle of the
H9 increases with pressure, which directly reduced the thrust at
higher pressures. Without thrust data in the training dataset, this
trend was unable to be counteracted by changes in other parame-
ters during the calibration procedure. Finally, we plot in Fig. 14 the
current density at all four radii in the training dataset, at a fixed
pressure of 26:10 μTorr. This demonstrates that our calibrated
model accurately captures trends with distance as well as pressure.

3. Training performance

A more quantitative picture of the training performance can
be obtained by examining the relative L2 error of the calibrated

FIG. 10. (a) Prior, (b) posterior, and (c) zoomed-in posterior predictions of the H9’s discharge current as a function of background pressure, compared to experimental
data from Ref. 22.

FIG. 11. (a) Prior, (b) posterior, and (c) zoomed-in posterior predictions of the H9’s thrust as a function of background pressure.
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model with respect to the training data. Given N samples of param-
eters θ and operating conditions d from the prior or posterior dis-
tributions, we calculate the mean and standard deviation of the L2
error in a QoI q as

Eq(x) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kyeq � fq(x)k

kyeqk

s
, (9)

FIG. 12. (a) Median of posterior predictions of the H9’s axial ion velocity at three background pressures, compared to data from Ref. 21. (b) Median posterior prediction
and uncertainty in ion velocity at the PB ¼ 17:5 μTorr condition.

FIG. 13. (a) Median of posterior predictions of the H9 plume ion current density distribution at r ¼ 1:32m. (b) Median posterior prediction and uncertainty in ion current
density at r ¼ 1:32 m and PB ¼ 13:4 μTorr.
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μq ¼
1
N

XN
j¼1

Eq(xj), (10)

σq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j¼1

Eq(xj)� μq
h i2vuut , (11)

where Eq(x) is the L2 error in QoI q between the model and data
for input parameters x. In Tables VI and VII, we report these
errors for the SPT-100 and H9, respectively, for N ¼ 1000 samples
of the inputs xj drawn from the prior and posterior input distribu-
tions as described in Sec. II D. For comparison, we additionally
report the errors when the model is evaluated at the median
parameter values (μ50 ¼ E(x50)) as well as the ratio between the
error and the nominal relative measurement uncertainties (ξ) used
in our previous work.10 A value of μ50=ξ � 1 indicates that the
model fits the data within the experimental uncertainty. We note
that these metrics are identical to those in our previous work,
which facilitates a direct comparison for determining improvement
in the models; we include in Table VI the model and surrogate
errors from the results of the previous work (note that a surrogate
was not required in the present work due to optimizations in the
thruster code).

All QoIs have a posterior μ50=ξ of order 1 and show large
improvement from the prior. For the SPT-100, most QoIs also
show improvement over both the model and surrogate from previ-
ous work. The error in Vcc is higher than the previous model,
which is likely explained by the wide posterior distributions of Tec

and PT as discussed in Sec. III A. We note that the goal of the pre-
vious work was to calibrate the true model using the surrogate as a

TABLE VI. Relative L2 error between model predictions and training data for the SPT-100. ξ is the nominal experimental error in the data, μ is the mean error, σ is the stan-
dard deviation of the error, and μ50 is the prediction error at median parameter values. This work is compared to surrogate and model results from previous work.10

SPT-100 L2 error (%)

QoI ξ (%) Distribution μ50 μ σ μ50/ξ

Vcc (V) 1 Prior (this work) 4 45.9 26.8 4
Posterior (this work) 2.5 2.8 0.5 2.5

Posterior (prev. work, model) 2 … … 2

Tc (mN) 1 Prior (this work) 30.4 27.6 13.3 30.4
Posterior (this work) 3.3 3.5 0.5 3.3

Posterior (prev. work, model) 29 … … 29
Posterior (prev. work, surrogate) 2.5 2.6 0.2 2.5

ID (A) 10 Prior (this work) 728.9 667.9 324.3 72.9
Posterior (this work) 3.3 3.9 1.4 0.3

Posterior (prev. work, model) 63 … … 6.3
Posterior (prev. work, surrogate) 45 45 0.3 4.5

uion (m/s) 5 Prior (this work) 24.2 25 4.8 4.8
Posterior (this work) 12.2 13.8 1.3 2.4

Posterior (prev. work, model) 17 … … 3.4
Posterior (prev. work, surrogate) 21 21 0.2 4.2

jion (A/m
2) 20 Prior (this work) 87.2 80.7 15.4 4.4

Posterior (this work) 11.4 18.6 1 0.6
Posterior (prev. work, model) 49 … … 2.4

Posterior (prev. work, surrogate) 33 33 0.3 1.6

FIG. 14. Median of posterior predictions of the H9 plume ion current density
distribution at multiple radii and PB ¼ 13:4 μTorr.
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proxy, and we show in Table VI that the model in the present work
shows considerably greater accuracy compared to the previous
model for all QoIs (except Vcc). There are some cases, such as for
thrust, where the surrogate from the previous work performs better
than our model, but the ultimate goal is accuracy in the true
model, for which the present work demonstrates better perfor-
mance (e.g., by a factor of eight for thrust). In all cases, the stan-
dard deviation of the errors, σ, is higher than our previous work.
While this may seem at first like a negative result, it in fact demon-
strates the success of our new likelihood function. In that work, the
uncertainty in our predictions was very low, and in many cases, the
data lay well outside of the uncertainty bounds. Our updated

procedure allows for larger predictive uncertainty, which more
accurately captures the state of our knowledge post-calibration.

The H9 model (Table VII) fits the data well for all quantities,
although here the interpretation of μ50=ξ is more complicated. For
comparing to the SPT-100 data, we use the same nominal measure-
ment uncertainty values, though we note that the uncertainty in
the cathode coupling voltage for the H9 was closer to 2.5%. This
would bring μ50=ξ down to 2:24, which is consistent with the error
for the SPT-100 cathode coupling voltage.

B. Test performance

In this section, we assess the ability of the calibrated model to
extrapolate to operating conditions outside of the training dataset.
To this end, we use the test datasets described in Sec. II B. In Fig. 15,
we plot the prior and posterior predictions of discharge current
[Fig. 15(a)] and thrust [Fig. 15(b)] for the SPT-100 dataset from
Ref. 16. We show in Fig. 16 the same QoIs for the H9 dataset in
Ref. 23. These plots compare the predicted QoI to the experimental
value, with good agreement indicated by points lying close to the
dashed black y ¼ x line. We also report in Table VIII the same L2
error metrics as in Sec. III A 3.

The SPT-100 model predicts the test data well and outper-
forms the model from previous work, though with errors larger
than those seen for the training data. The standard deviation in
thrust and discharge current errors is reduced to below 2.5%, and
the posterior median errors are below 10%. Additionally, the
model tends to slightly under-predict the experimental thrust.
The model predicts the correct discharge current for the H9 with
an error of just 1.3%, with a standard deviation of 1.8%; this good

TABLE VII. Relative L2 error between model predictions and training data for the
H9. Symbols have the same meanings as Table VI.

H9 L2 error (%)

QoI ξ (%) Distribution μ50 μ σ μ50/ξ

Vcc (V) 1 Prior 10.7 53.8 28.4 10.7
Posterior 5.4 6.1 1.3 5.4

ID (A) 10 Prior 318.2 301.9 157 31.8
Posterior 3.4 4.3 1.1 0.3

uion (m/s) 5 Prior 45.8 43.6 8.1 9.2
Posterior 4.1 5.3 1 0.8

jion (A/m
2) 20 Prior 82.6 76.9 18.6 4.1

Posterior 18.9 19.5 0.5 0.9

FIG. 15. Prior and posterior predictions of (a) discharge current and (b) thrust for the SPT-100 Hall thruster from the test dataset in Ref. 16. Perfect agreement (y ¼ x) is
indicated by the dashed black line. Horizontal error bars indicate the experimental error while vertical bars represent the range between the 5th and 95th percentiles of pre-
dictions. The median prediction is indicated by a marker.
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agreement is unsurprising in light of the fact that the discharge
current was a constant 15 A in both training and test datasets.
Despite lacking thrust in the training data, the H9 model is able
to improve on the prior predictions for thrust and obtain a

median prediction error of 10%. The error standard deviation has
additionally been reduced by a factor of four from the prior, but
the predicted thrusts underestimate the experimental values in all
cases.

FIG. 16. Prior and posterior predictions of (a) discharge current and (b) thrust for the H9 Hall thruster from the test dataset in Ref. 23). Plot features have the same mean-
ings as in Fig. 15.

TABLE VIII. Relative L2 error between model predictions and test data for the SPT-100 and H9. The SPT-100 test data comes from Ref. 16 and the H9 test data from Ref. 23.
Previous work values come from Ref. 10. Symbols have the same meanings as Table VI.

SPT-100 L2 error (%)]

QoI ξ (%] Distribution μ50 μ σ μ50/ξ

Tc (mN)] 1 Prior (this work) 29.8 28.3 12 29.8
Posterior (this work) 9.6 10.4 1.8 9.6

Posterior (prev. work, model) 30 … … 30
Posterior (prev. work, surrogate) 7 7 0.1 7

ID (A)] 10 Prior (this work) 672.9 622.2 325.1 67.3
Posterior (this work) 8.9 9.6 2.4 0.9

Posterior (prev. work, model) 53 … … 5.3
Posterior (prev. work, surrogate) 40 40 0.1 4

H9 L2 error (%)]

QoI ξ (%)] Distribution μ50 μ σ μ50/ξ

Tc (mN)] 1 Prior 27.2 25.6 14.8 27.2
Posterior 10 10.4 3.8 10

ID (A)] 10 Prior 340 315.1 156.3 34
Posterior 1.3 3.8 1.8 0.1

jion (A/m
2)] 20 Prior 88.6 81.3 17.3 4.4

Posterior 34.3 34.4 1.8 1.7
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Taken together, these results show that the calibrated models
of both the H9 and SPT-100 are able to extrapolate beyond their
training datasets. This was especially observed for the SPT-100, and
it is likely that the performance of the H9 model would improve if
a wider range of training conditions is made available (i.e., more
discharge currents and thrust data).

C. Extrapolation to orbit

We now turn to using the calibrated model to attempt extrap-
olation of SPT-100 ground test data to space. We report in
Table IX predictions of the SPT-100 thrust and discharge current
for the on-orbit Express satellite test dataset.3

The discharge current is captured to within 5% of the experi-
mental value in both cases, and we correctly predict that the current
should increase slightly between the ground and orbit. We also
recover the thrust to within 10%, though as in the test dataset from
Ref. 16, we under-predict the thrust in both cases. However, we also
predict that the thruster should exhibit higher thrust on orbit
than on the ground, which conflicts with the trend in the data.
We suspect this result stems from the fact that all simulations in
the training dataset were performed at a discharge voltage of
300 V, while the SPT-100 from Ref. 3 operated at 310 V on orbit.
During training, the model was, thus, unable to learn how
changes in discharge voltage affect the thruster’s performance and
plasma properties. The effects of the voltage discrepancy between
on-ground and on-orbit operation in this case likely overwhelmed
the pressure-dependent effects, causing the model to predict the
wrong trend. To assess whether the 10 V voltage difference could
account for the reversal in the direction of the trend, we run an
additional batch of simulations with 300 V on orbit instead of
310 V [labeled “Orbit (300 V)” in Table IX]. In this case, we observe
a modest reduction in thrust from ground to orbit as expected, with
a median decrease of 0.3 mN. We additionally note that the mass
flow rate for these data was not measured for either on-ground or
on-orbit operation in this dataset, making it challenging to reproduce
the operating conditions accurately. These results suggest that more
data over a wider range of operating conditions are needed for accu-
rate extrapolation to orbit.

D. Anomalous electron transport

The magnitude and scaling of the anomalous electron trans-
port are known to have a large impact on Hall thruster model
results compared to other parameters. Here, we briefly analyze the

calibrated anomalous electron collision frequency profiles and the
uncertainty in the five transport parameters. In Fig. 17, we show
the profiles of the anomalous electron collision frequencies for the
SPT-100 and H9 at three pressures each. As designed, the profile
moves upstream at higher pressures. The uncertainty in the axial
position of the profile is very low, as reflected by the distributions
of parameters zanom and Lanom in Tables IV and V. The uncertainty
in the magnitude of the anomalous transport at the bottom of the
Gaussian trough, βanom is similarly low. The posterior this variable
lies in the range (0:95, 1) for both thrusters, from a prior range of
(0, 1). In contrast, the maximum magnitude of the anomalous
transport (governed by αanom) has high uncertainty, spanning at
least a factor of two for both thrusters. This result is in line with
similar observations by Mikellides and Lopez-Ortega,7,26 as well as
those by Hara and Mikellides,27 which found that the near-anode
anomalous collision frequency has a larger effect thrust and ioniza-
tion oscillations than it does on the ion velocity profile. This also
explains the larger uncertainty in αanom for the H9, as without
thrust data the near-anode electron transport was not as con-
strained as for the SPT-100. Finally, the correlation between Lanom
and βanom may have increased the uncertainty in αanom due to their
conflicting effects on discharge current, as described in Sec. III A.

E. Global sensitivity analysis

As in our previous work, we use Sobol’s method28 to compute
the influence of each of the model parameters in Table I on each of
the five quantities of interest in Table II. For the ion velocity and
ion current density, we use the value attained at the exit plane and
peak current density, respectively, as our output variables. We draw
5000 samples from the prior distributions of each variable and use
these to estimate the Sobol’ total-effect indices. These measure the
amount of the variance in each output variable is attributable to
any given input,29,30 including all second- and higher-order corre-
lated effects. Figure 18 shows the computed indices for each vari-
able and quantity of interest. Note that the sum of all total-effect
indices for a given quantity will in general be greater than one.

For both the SPT-100 [Fig. 18(a)] and the H9 [Fig. 18(b)], the
cathode coupling voltage is most sensitive to the vacuum coupling
voltage Vvac. As this parameter is responsible for setting the
minimum coupling voltage, this high level of sensitivity makes sense
in light of results in Figs. 4 and 9, in which the change in cathode
coupling voltage with background pressure is shown to be small rela-
tive to this minimum value. The discharge current is most sensitive
to the anomalous transport scale αanom and the transport barrier

TABLE IX. SPT-100 thrust and discharge current from the Express-A satellites3 compared to model.

QoI Case Data Sim. median Sim. 5th‰ Sim. 95th‰

Thrust (mN) Ground (300 V) 84.6 ± 2.4 75.2 71.2 78.7
Orbit (310 V) 83.3 ± 3.2 76.6 73.1 80.3
Orbit (300 V) … 74.8 70.9 78.6

Discharge current (A) Ground (300 V) 4.5 4.3 4.06 4.53
Orbit (310 V) 4.6 ± 0.1 4.33 4.1 4.58
Orbit (300 V) … 4.3 4.07 4.53
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depth βanom, with the other parameters having minor effects. The
thrust sensitivities are similar for both thrusters, with αanom and mul-
tiple plume parameters (c0, c1, and c3) providing the largest contribu-
tions, these latter via their influence on the plume divergence
efficiency. The ion velocity at the exit plane is most sensitive to the
zanom, αanom, and βanom anomalous parameters in both thrusters, and
the peak ion current density is most influenced by c0, c3, and c4.
Finally, as suggested by the marginal distributions in Sec. III A, all
QoIs are insensitive to the neutral ingestion factor fn, with the largest
effect seen in the thrust of the SPT-100.

The lack of sensitivity of the QoIs to many of the variables, in
particular the neutral velocity and the cathode parameters, is likely
due to the outsized effects of the anomalous transport parameters

on the prior. On restricted parameter ranges closer to the calibrated
values, we expect that the relative sensitivity of the QoIs to many
parameters would increase. We investigate this hypothesis in
Appendix D by repeating the same analysis using samples from the
calibrated posterior distributions for each thruster.

IV. DISCUSSION

In this work, we applied Bayesian inference to calibrate a
coupled multi-component Hall thruster model against experimental
data for the SPT-100 and H9 thrusters. We used these models to
produce probabilistic predictions of several quantities of interest
(QoIs), including thrust and spatially resolved ion velocity, at dif-
ferent operating conditions and background pressures. Across most
QoIs, the models of both thrusters exhibited training and test
errors of less than 10%, with the SPT-100 model outperforming
previous work. We now turn to a discussion of the results, begin-
ning a summary of our core findings. We then discuss some of the
challenges we encountered and the primary sources of uncertainty
in our predictions. Finally, we dicusss some limitations of our
approach and ways in which they might be remedied.

A. Core findings

1. Bayesian inference is an effective tool for calibrating and
quantifying uncertainty in Hall thruster models. Our calibration
procedure automatically and robustly explored and optimized over
a large and high-dimensional parameter space. For all QoIs, it
reduced uncertainty in predictions and improved the model’s accu-
racy over the prior without manual intervention. Additionally, we
optimized over the entire dataset at once, in parallel, instead of
tuning the model parameters per-condition. These results demon-
strate the usefulness of Bayesian methods for calibration in the
context of Hall thruster modeling.

2. The calibrated models fit the training data well and can
generalize to unseen test data at a limited range of conditions.
The models and parameterizations we used in our coupled frame-
work captured the correct trends in the training data across many
background pressures. In addition to high training accuracy across
most QoIs, we also observed <10% median test error on thrust and
discharge current for both the SPT-100 and H9 thrusters.
Additionally, modeling changes in this work related to facility
effects and anomalous transport were the primary cause of
increased performance over our previous work10 (see Appendix B).
When extrapolating SPT-100 data to orbit, the model correctly cap-
tured the trend in discharge current, and obtained median errors of
<10% for both thrust and discharge current. However, we predicted
the wrong trend with thrust, likely due to a lack of diversity in
operating conditions in the training dataset. This underscores the
need for varied training data when building predictive models.

3. The phenomenological anomalous transport models were
successful at predicting ion velocity profiles at varying pressures.
In this work, we introduced a new four-parameter empirical model
for the anomalous electron transport and a simplified logistic
pressure-dependent model for the location of the acceleration
region. Together, these models were able to reproduce the experi-
mentally observed trends in ion velocity with high accuracy. In par-
ticular, the median ion velocity error for the H9 was less than 5%.

FIG. 17. Posterior estimates of the anomalous electron collision frequency for
the (a) SPT-100 and (b) H9, at three background pressures each. The collision
frequencies are normalized by the Bohm diffusion value of νbohm ¼ ωce=16.
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Our global sensitivity analysis in Sec. III E showed that, in line with
both our previous work10 and others,6,7,31 the Hall thruster model
is highly sensitive to the anomalous electron transport parameters.
The four-parameter transport model exhibits a better distribution of
sensitivities across its parameters than the two-zone model in our
previous work. Additionally, we were able to reduce the number of
parameters of the pressure-dependent acceleration region model
from four to one without a loss in fidelity. Finally, we note that
neglecting the upstream pressure shift, the posterior anomalous
transport parameters were very similar between the H9 and SPT-100.
We believe that the four-parameter model with αanom ¼ 1=16,
βanom � 0:99, zanom � 1:05, and Lanom � 0:38 may be a good start-
ing choice when simulating other thrusters at 300 V, though it
remains necessary to verify this with other codes. However, we note
these that parameters may not generalize well to thrusters operating
at higher voltages and that an explicit voltage dependence is needed
to improve the robustness of the model’s extrapolation capabilities.

B. Aleatoric uncertainty

As noted in Sec. II D, we neglected aleatoric uncertainty in the
operating conditions during data. This enabled us to first perform
inference on the epistemic variables alone, then propagate forward
the aleatoric uncertainty during the prediction step. While conve-
nient, this approach underestimates the true aleatoric uncertainty
and breaks down in cases where the aleatoric uncertainty is large.
This was the case for the mass flow rate in our on-orbit predictions
of the SPT-100, which was only estimated and not experimentally
measured. Accounting for this rigorously would require marginaliz-
ing the aleatoric parameters out of the likelihood, potentially using
pseudo-marginal MCMC.24 During prediction, we would then have

to sample over a range of operating conditions or provide worst
case probabilistic predictions. While this approach would provide a
fuller picture of the relative roles of aleatoric uncertainty, it would
also incur a larger computational cost. We leave an exploration of
these more advanced inference techniques for future work.

C. Model form error

While we focused primarily on aleatoric and epistemic uncer-
tainty in our work, there remained error due to our modeling and
parameter choices. For many QoIs, our chosen model system was
capable of capturing the data within epistemic and aleatoric uncer-
tainty, but for others the model and data differed even after calibra-
tion. This uncertainty was most evident in predictions of ion
velocity for the SPT-100 and ion current density for the H9. In
both cases, the epistemic and aleatoric uncertainties were low while
large discrepancies from the experimental data remained. This mis-
match reflects the inability of the chosen model form to accurately
capture features of the data, such as the off-axis peaks in the current
density of the H9 or the extended ion backflow region of the
SPT-100. The neutral ingestion model was another source of model
uncertainty, as it was only partially successful at capturing trends in
thrust with background pressure. A robust accounting of model error
in a Bayesian context would be a welcome addition to our framework
but is an active area of research.

Without the ability to incorporate model form error into our
calibration procedure, we can attempt to reduce it by improving the
flexibility of the models themselves. Indeed, much of the improve-
ment from our previous work was enabled by iterative improvements
to the thruster component model and its parameterization. The ana-
lytic plume model stands our as needing improvement as it cannot

FIG. 18. Sobol’ total indices computed over the prior parameter distributions for (a) the SPT-100 operating on xenon and (b) the H9 operating on krypton. Error bars repre-
sent 5th and 95th percentile index estimates obtained via bootstrapping with 200 samples.
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model distributions in which the peak current density occurs away
from the thruster centerline, such as in the H9. To remedy this, it
would either need to be expanded with additional physical and geo-
metric effects (particularly regarding annular shape of the Hall
thruster and the associated focusing of the ion beam) or replaced
with a more complex model altogether. Improvements to the
cathode coupling model are also possible—in particular, to be able to
capture some of the differences between centrally mounted and
externally mounted cathodes.

The thruster model could also be improved to increase its
agreement with data. Charge-exchange collisions, not currently
modeled by HallThruster.jl, should be a high priority for future ver-
sions of the framework, as they play a large role in pressure-related
facility effects.32 Accurately modeling ion acceleration at different dis-
charge voltages and magnetic field strengths would also require a
more complex anomalous transport model with explicit or implicit
dependencies on these operating conditions.

The sensitivity analysis in Sec. III E shows that the QoIs are sen-
sitive to most of thruster model parameters, with the major exception
of the neutral ingestion parameter fn. The insensitivity of the model
to this parameter implies the need for a more comprehensive neutral
flow model. This model could be analytic, such as that of Frieman
et al.,17 or take the form of a combined model for the plume and
vacuum chamber.33 Incorporating these more complex models
requires a much larger amount of information about the thruster
and test environment than we currently use, including detailed 2D
thruster geometric and magnetic field information, the distribution
of cryopumps and ion gauges throughout the chamber, and the
geometry of the facility and beam dump. This information is not
always available in the literature, which would pose challenges when
calibrating these higher fidelity models.

D. Choice of quantities of interest

In both this work and our previous work, we compared our
simulation results to the same five QoIs—cathode coupling voltage,
thrust, discharge current, ion velocity, and ion current density.
Each of these QoIs helped the calibration procedure reduce uncer-
tainty for a different set of parameters. Lacking data for one of
them, as we did for thrust in the H9 training dataset, led the
model’s thrust estimates to be poorly constrained for this thruster.
However, the data available for some of our QoIs was limited,
potentially reducing their efficacy in driving the calibration proce-
dure toward a predictive model. For instance, at each training
point, the discharge voltage was fixed at 300 V for both thrusters,
and the discharge current was between 4.25 and 4.5 A for the
SPT-100 and exactly 15 A for the H9. This meant that the calibra-
tion procedure was not forced to generalize across large changes in
mass flow rate and had no ability to respond to changes in voltage.
The impact of this deficiency became apparent in our attempted
extrapolation to orbit, in which the uncalibrated voltage response
of the model overwhelmed the calibrated pressure-related trends.
Including a wider range of conditions in the training data may
have reduced posterior uncertainty further and allowed the models
to better generalize to the test data.

Additional data sources are available that would further help
refine our parameter estimates and motive modeling improvements.

For instance, ion energy distribution function measurements made
via retarding potential analyzer and species fraction measurements
obtained from E � B probes both provide valuable physical insight
into the state and evolution of the Hall thruster plasma.
Furthermore, time-resolved data remain an important and under-
utilized resource, and future versions of our model may be
strengthened by attempting to match these data. Non-invasive laser
measurements of the electron energy distribution functions21,34 are
an increasingly important source of information about electron
transport and plasma heating. In each case, updating our frame-
work to be able to take advantage of these data will require changes
to be made to both the component models and the calibration pro-
cedure. Finally, carbon back-sputter35 and electrical and circuit
effects5 stand out as two pressing facility effects which our frame-
work does not attempt to model. Thanks to the modularity and
usability changes made for this work, incorporating models for
these phenomena would not be prohibitively difficult, and doing so
is a priority for future work.

V. CONCLUSION

In this work, we developed an improved framework for rapid
prediction of Hall thruster performance. By coupling cathode,
thruster, and plume models with Bayesian inference, we can cali-
brate model parameters to data and predict important quantities
with detailed uncertainty quantification. We used this model to
reduce the uncertainty in many key parameters and obtained
improved training performance over our previous work. We then
demonstrated good generalization outside of the models’ training
dataset and attempted to extrapolate the performance of a thruster
operating on the ground to orbit. Furthermore we extended the
model to simulate a magnetically shielded thruster in addition to
the SPT-100. These improvements were made possible due to mod-
eling improvements, including a new empirical anomalous trans-
port model, as well as changes to our Bayesian likelihood.

Despite some challenges, including a lack of thrust data for
the H9 and a small range of operating conditions in the training
dataset, the current model serves both as a good standalone Hall
thruster model as well as a useful baseline for future extensions. By
incorporating new and upgraded models as well as additional data
sources, we plan to continue improving the framework’s predictive
power and generality.
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APPENDIX A: SELECTED DATA FROM THE EXPRESS
SATELLITES

In this Appendix, we summarize the data from the Russian
Express satellites that we used in our attempt to predict the
on-orbit performance of the SPT-100 in Sec. III C. These data were
originally reported by Manzella et al. in 2001.3 Following the analy-
sis of Byrne and Jorns,36 we use measurements only from thrusters
that had been fired for over 30 h in space, which was 50% longer
than the manufacturer’s recommended burn-in time. The thrusters
meeting this criteria were thrusters RT2 from Express-A #2 and
RT1, T4, and RT4 from Express-A #3. We report in Table X thrust
measurements averaged across these thrusters. We note that the
mass flow rate was not measured in either condition and that the
discharge voltage on orbit was 310, 10 V higher than the nominal
values from the ground tests.

APPENDIX B: INTERMEDIATE MODEL RESULTS

In this Appendix, we show selected results for the SPT-100
Hall thruster using an “intermediate model” between the one in our
previous paper10 and the one presented in this work. We employ the
inference and calibration procedure developed in Sec. II C but use a
model parameterization similar to our previous work. Specifically, we
use a two-zone Bohm-like anomalous transport profile, a four-
parameter pressure shift model, and no wall loss or neutral ingestion
parameters. This exercise allows us to assess how much of the

TABLE X. Operational and performance data obtained on the ground and in orbit
from two Express-A satellites. Data aggregated from Ref. 3. Mass flow rates (*)
were not directly measured and are instead calculated in Ref. 3 by assuming a total
xenon flow rate of 5.3 mg/s and a 7% cathode flow fraction. Reported uncertainties
are ±2 standard deviations.

Pressure
(Torr) _ma (mg/s) VD (V) ID (A) T (mN) Note

2 × 10−6 4.29* 300 4.5 84.6 ± 2.4 Ground tests
2 × 10−8 4.29* 310 4.6 ± 0.1 83.3 ± 3.2 On-orbit

measurements
FIG. 19. (a) Discharge current and (b) thrust vs pressure for the SPT-100 using
the model of Ref. 10.
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improvement over our previous work stems from better sampling vs
improved modeling.

First, in Fig. 19, we show the discharge current and thrust pre-
dicted by the model after calibration. In contrast to the model of
the present work, the discharge current of the previous model lies
above the experimental value for all pressures and has an exagger-
ated pressure dependence. The thrust also exhibits overly strong
pressure-related trends. In Fig. 20, we show the predicted ion veloc-
ity profiles of the previous model as a function of background pres-
sure. The pressure shift model used in our previous work captures
the upstream displacement of the acceleration region well but is
over-parameterized, requiring four parameters instead of just one

as in the present work. Additionally, the new anomalous transport
model better captures the shape and steepness of the ion velocity
profiles. Finally, in Table XI, we compare the training error metrics
of the previous model to those of the present model. We find that
the present model exhibits lower mean and median errors in thrust
and discharge current by a factor of 60%–90%. In all, these findings
are approximately as good as those obtained in our previous work,
although predict more exaggerated trends in discharge current and
thrust with pressure than are observed in the data. These results
suggest that the updated model parameterization played a larger
role in improving our results from our previous paper than the
changes to the inference procedure.

APPENDIX C: POSTERIOR PARAMETER
DISTRIBUTIONS

In this Appendix, we include plots of the 1D and 2D marginal
posterior distributions for each model parameter obtained with
Bayesian inference. Due to the large number of variables, we
have broken these figures up by component for clarity. We plot in
Figs. 21, 22, and 23 the cathode, plume, and thruster parameter
marginals, respectively, for the SPT-100 operating on xenon.
The same distributions for the H9 operating on krypton are in
Figs. 24, 25, and 26, respectively.

We make a few observations beyond those made in Sec. III A.
For both thrusters, the transport barrier length Lanom correlates
with αanom and clusters at the upper end of its range, indicating
that higher values may have given better results. Additionally, the

TABLE XI. Training error metrics of the intermediate model and the model of the
present work. Symbols have the same meanings as in Table VI.

QoI ξ (%) Distribution μ50 μ σ μ50/ξ

Vcc (V) 1 Posterior (old model) 2.6 2.6 0.1 2.6
Posterior (new model) 2.5 2.7 0.5 2.5

Tc (mN) 1 Posterior (old model) 11.4 11.2 0.4 11.4
Posterior (new model) 3.3 3.5 0.5 3.3

ID (A) 10 Posterior (old model) 37.6 38 0.5 3.8
Posterior (new model) 3.3 3.9 1.4 0.3

uion (m/s) 5 Posterior (old model) 13.8 16.6 0.5 2.8
Posterior (new model) 12.2 13.8 1.2 2.4

jion (A/m
2) 20 Posterior (old model) 34.7 33 0.4 1.7

Posterior (new model) 11.4 18.7 1 0.6

FIG. 20. Ion velocity profiles for the SPT-100 at different background pressures
using the model of Ref. 10.

FIG. 21. 1D and 2D marginal posterior distributions for the SPT-100 cathode
parameters.
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anomalous pressure shift parameter Δzanom correlates with zanom,
since both parameters shift axially the anomalous electron collision
frequency. Across all components, we observe largely unimodal
parameter distributions with the exception of c2 for the H9 plume,

which has two peaks. This parameter controls the pressure depen-
dence on the divergence angle. Examining Fig. 25, it is not immedi-
ately clear why this should be as we fit the trends with pressure
well.

FIG. 22. 1D and 2D marginal posterior distributions for the SPT-100 plume parameters.
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FIG. 23. 1D and 2D marginal posterior distributions for the SPT-100 thruster parameters.

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 138, 153305 (2025); doi: 10.1063/5.0283796 138, 153305-25

© Author(s) 2025

 21 O
ctober 2025 15:18:37

https://pubs.aip.org/aip/jap


APPENDIX D: SOBOL’ ANALYSIS ON THE POSTERIOR

Figures 27(a) and 27(b) show the Sobol’ total-effect indices for
the SPT-100 and H9, respectively, computed using samples of the
posterior distribution. We caution that these results should not be
interpreted quantitatively.28,30 Variance-based sensitivity analysis
assumes the variables are independent and uncorrelated, which is
not the case under the posterior. The effects of highly correlated
parameters, such as zanom and Δzanom, may, therefore, be mixed and
difficult to distinguish from one another. Still, these results are
helpful in a qualitative sense to assess the relative importance of the
each parameter after calibration, where they have restricted ranges
compared to the prior.

Compared to the results obtained from the prior
distributions in Sec. III E, the QoIs are sensitive to a larger
number of parameters. While the cathode coupling voltage was
sensitive mainly to Vvac on the prior, on the posterior distribu-
tions, the influences of the other cathode properties become
more important. The SPT-100’s more complex cathode cou-
pling voltage curve makes it sensitive to all of the cathode
parameters, while the H9 is only sensitive to Vcc and PT . Under
the posterior, the neutral density and other anomalous trans-
port parameters have also become more important, and for the

FIG. 24. 1D and 2D marginal posterior distributions for the H9 cathode
parameters.

FIG. 25. 1D and 2D marginal posterior distributions for the H9 plume parameters.
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SPT-100, the thrust is also sensitive to the cathode variables.
Finally, whereas under the prior the peak current density was
only sensitive to some of the plume properties, under the pos-
terior, it is sensitive to a number of thruster parameters. The

more equally distributed parameter sensitivities under the pos-
terior shows that most parameters have a strong impact on at
least one QoI and that our parameterization is reasonably
well-chosen.

FIG. 26. 1D and 2D marginal posterior distributions for the H9 thruster parameters.
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