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One of the primary challenges in understanding variations in electric propulsion performance between ground

tests and space operations lies in the pressure distribution within the test vacuum chamber. The chamber

backpressure is much higher than experienced in space, modifying thruster performance and plume dynamics.

Numerical simulation is a key element in determining the background conditions in nonideal vacuum chamber

environments. An important parameter for the accurate simulation of chamber backpressure is the sticking

coefficient, which sets the probability that an atom will stick to a cryogenic panel used to pump away the plume

gases. This quantity can be used to model vacuum pumps in particle-based kinetic numerical methods. In this work,

a three-dimensional direct simulation Monte Carlo code is used to model neutral xenon atoms flowing from the

anode of the H9 Hall effect thruster within a large vacuum test facility. Simulated pressures are compared with ion

gauge pressure measurements to infer the effective sticking coefficient of the chamber’s vacuum pumps. A pressure-

predicting surrogate model is developed for inference of pump sticking coefficients and for uncertainty

quantification. This information facilitates accurate and useful kinetic simulations of electric propulsion thruster

plasma plumes in vacuum chambers.

Nomenclature

A = pump area, m2

d = collision diameter, m
F = force, N
f = pumping speed, m3∕s
g = relative speed, m∕s
Kn = Knudsen number
kB = Boltzmann constant, J∕K
LC = characteristic length of the system, m
m = mass, kg
_m = mass flow rate, kg∕s
N = normal distribution
Npairs = total particle pairs to be assessed for collision

NP = number of macroparticles
n = number density, m−3

ref = reference value
ST = total-order Sobol’ index
S1 = first-order Sobol’ index
T = gas temperature, K
Tp = pump temperature, K

U = uniform distribution
y = experimental data

α = accommodation coefficient
Δt = simulation time step, s
θcp = cryopump sticking coefficient

θcs = cryosail sticking coefficient
λ = mean free path, m
ν = collision frequency s−1

v = particle velocity, m∕s
σ = collisional cross section, m2

I. Introduction

E LECTRIC propulsion thrusters have become widely used for
station-keeping and orbit-raising due to their high specific

impulse, longevity, and reliability [1]. Hall effect thrusters (HETs)
are particularly attractive due to the relative simplicity of their
design and their high thrust-to-power ratios [2]. The higher specific
impulse of electric propulsion over chemical propulsion allows
mission designers to allocate less mass for onboard propellant,
reducing launch costs and/or increasing the payload mass allow-
ance. High-power electric propulsion (∼100 kW) offers the poten-
tial for rapid and fuel-efficient space travel. For the development and
deployment of high-power electric propulsion, thrusters must be
tested in vacuum chambers on Earth, as testing in space is prohibi-
tively expensive. Increasing the power of an electric propulsion
system tested in a vacuum chamber leads to a higher mass flow
rate of the thruster, which reduces the vacuum chamber’s ability to
replicate the space environment [3,4]. Due to limitations in facility
pumping capacity imposed by chamber surface area constraints, a
higher mass flow rate results in increased facility backpressure.
Elevated background pressures alter the amount of gas ingested
by the thruster, the production of charge-exchange ions, and the
divergence of the plume.
To reliably extrapolate thruster performance and lifespan for in-

space operations, it is essential to complement ground-based tests
with predictive models. Because vacuum chambers cannot fully
replicate the space environment, these models serve as a bridge,
translating chamber data into reliable predictions of in-space behavior.
A computational model that accurately reproduces vacuum chamber
measurements is more likely to yield realistic predictions of thruster
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performance and lifetime in space environments. Achieving this
accuracy requires incorporating physics unique to the vacuum
chamber environment, particularly those associated with the cham-
ber’s vacuum pumps.
An accurate model of facility vacuum pumps is required to

calculate the spatial variations in chamber backpressure. Operating
at extremely cold temperatures, cryogenic vacuum pumps remove
gas by freezing it onto their surfaces. This process can be effectively
modeled by assigning sticking coefficients to the pump surfaces.
The sticking coefficient sets the fraction of particle-pump inter-
actions that result in sticking versus reflection. This work adopts
an approach for inferring pump sticking coefficients by comparing
simulated pressure distributions with pressure measurements [5].
Since the employed gas dynamics model relies on uncertain inputs,
the output of the model is also uncertain. Uncertainty quantification
(UQ) applied to quantities like chamber backpressure is essential
for confidently extrapolating thruster performance and lifetime
from vacuum chambers to space environments. The remainder of
this paper presents the experimental setup in Sec. II, the numerical
methods in Sec. III, the results in Sec. IV, and the conclusions
in Sec. V.

II. Experimental Overview

This section details the experimental setup of the vacuum facility,
the ionization gauges used for pressure measurements, and the
configurations of the Hall thruster. Experiments involve flowing
neutral gas into the vacuum chamber and making steady-state
pressure measurements. The data from these experiments is used
to infer the characteristics of the facility’s vacuum pumps.

A. Vacuum Facility

All experiments are performed in a cylindrical chamber that is 9
m long and 6 m in diameter. The chamber is equipped with two
types of vacuum pumps. The first type of pump, referred to as a
cryopump, is the PHPK-TM1200i re-entrant vacuum pump. The
chamber is populated by 13 cryopumps, each of which is housed in
a baffled, liquid-nitrogen-cooled casing. The second type of pump,
referred to as cryosails, is a liquid-nitrogen-free cryogenic pump [6].
At the time of these experiments, there were a total of five cryosails
within the vacuum facility. Figure 1 shows a picture of the interior of

the chamber. The baffled structures in Fig. 1 are the cryopumps, and

the octagonal surfaces are the cryosails.
Two sets of experimental pressure measurements are collected in

this work. One set comes from experiments using a high-pressure

pump configuration, and the other set uses a low-pressure pump

configuration. The high-pressure configuration has three cryopumps

active along the top of the chamber as well as two inactive pumps

with active liquid nitrogen shrouds. The low-pressure configuration

uses 13 cryopumps and four cryosails. Figure 2 shows a rendering of

each configuration as well as an illustration of the computational

domain used in this work. As shown in Fig. 2, the cryopumps are

mounted along the interior sidewalls and ceiling of the chamber.

These cryopumps are arranged symmetrically within the chamber:

four are mounted on the rear end-cap; three form a transverse row

extending from one sidewall, across the ceiling, to the opposite

sidewall in a plane aligned with the thruster; five are arranged

similarly in a second transverse row approximately 1.5 m down-

stream of the thruster; and one additional cryopump is mounted on

the ceiling approximately 3 m downstream of the thruster. The four

employed cryosails are also mounted symmetrically within the

chamber. Two are positioned between the cryopumps on the cham-

ber’s end-cap, while the other two are mounted on the sidewalls in

the thruster’s exit plane, approximately 1 m below the thruster

centerline. The thruster is mounted with its center located approx-

imately 2.5 m above the chamber floor and 3 m forward of the rear

end-cap, oriented to face the beam trap.

B. Ionization Gauges

Two Granville-Phillips 370 hot-cathode Bayard-Alpert Stabil-ion

gauges running on a 370 series vacuum gauge controller are used

for measuring chamber pressure. These gauges are capable of

measuring pressures in the range of 10−10 to 103 Torr. One ioniza-
tion gauge, referred to as gauge 1, faces downstream (the direction

in which the thruster expels gas) and is located 1 m away from

the thruster in the thruster exit plane (as is recommended in [7]).

The other ionization gauge, referred to as gauge 2, faces away from

the thruster and is located 1 m behind the thruster (the front of the

thruster being defined as the side with the acceleration channel,

which points toward the beam trap). Figure 3 shows the approxi-

mate locations of the ionization gauges in the chamber. Pressure

measurements from both gauges were originally calibrated for

nitrogen by the manufacturer and corrected to xenon using a

spinning rotor gauge. Although the gauge calibration expired in

July 2023, all pressure measurements used in this study were

acquired in May 2022, before the expiration date. The accuracy

of the gauges is taken to be �10% based on heritage data. This

estimate does not account for thermal effects that may influence

gauge behavior in vacuum environments. As discussed in Ref. [7],

ion gauge readings are sensitive to both the local gas temperature

and the gauge temperature. For the room-temperature gas condi-

tions present in this study, temperature effects from the gas are

expected to be negligible. The gauge temperature can deviate from

ambient due to the lack of convective cooling and the presence of

nearby cryogenic surfaces. These thermal effects are not explicitly

corrected for in the ion gauge measurements and are acknowl-

edged as a source of potential uncertainty and an area for future

refinement.

C. Hall Thruster

The thruster used in all experiments is the magnetically shielded

9-kW H9 HET. The centrally mounted lanthanum hexaboride

cathode, the anode/gas distributor, and the acceleration chamber

geometry of the H9 were all inherited from the unshielded 6-kW

H6 HET. More information about the H9 may be found in [8]. In

all experiments, neutral xenon atoms flow through the anode of the

H9 without a plasma discharge. Mass flow rates and the corre-

sponding pressure measurements from both ionization gauges are

reported in Tables 1 and 2 for the high- and low-pressure configu-

rations, respectively.
Fig. 1 The interior of the chamber featuring octagonal cryosails and
baffled PHPK-TM1200i cryopumps.
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III. Numerical Methods

A. Physics-Based Modeling

The modeling approach for simulating dilute gas flow ejected from
the thruster within the vacuum chamber involves using a direct sim-
ulationMonte Carlo (DSMC) code. The code, known asMONACO, is
a parallelized 3D DSMC code that accommodates unstructured
meshes. MONACO uses static boundary conditions and provides
time-averaged steady-state results. Kinetic descriptions of gases, the
DSMC method, and the boundary conditions used in this work are
discussed in the following three subsections.

1. Kinetic Modeling of Gas Dynamics

The extent of rarefaction of a gas flow may be quantified by the
following nondimensional parameter known as the Knudsen number:

Kn � λ

LC

(1)

where λ is the mean free path of the gas and LC is a characteristic
length of the system. When Kn < 0.01, the continuum assumption is
valid and fluid conservation equations accurately describe the system.
The case when Kn > 1 is known as free molecular flow. In this
regime, a kinetic description of the flow is needed. A kinetic descrip-
tion is necessary for large-Knudsen-number, nonequilibrium flows in
which the lack of collisions permits non-Maxwellian velocity distri-
bution functions. The transitional regime, where typical electric pro-
pulsion plumes reside [9], is characterized by 0.01 < Kn < 1. In this
regime, collisions are important but insufficient for bringing the
system into equilibrium. When modeling transitional gases, it is
necessary to use a kinetic approach.
To accurately resolve the distribution functions within a rarefied

gas, kinetic methods that capture the physics of the Boltzmann
equation are required [10]. This work employs a particle-based
kinetic approach in which the motion of individual macroparticles
that represent a much larger number of real particles is tracked
through the computational domain. The transport of neutrals and
the collision dynamics thereof are simulated using the DSMC
method [11].

2. Direct Simulation Monte Carlo

The DSMC method leverages key physical properties of dilute
gases to efficiently and accurately model flow behavior [10]. One
such property is that molecules primarily move in free flight without
interacting for durations comparable to the local mean collision
time, enabling the separation of particle translation from particle–
particle collisions. This separation simplifies modeling and reduces
computational cost by eliminating the need for continuous collision
tracking. When collisions occur, the impact parameters and initial
orientations of molecules are random, reflecting the stochastic
nature of molecular interactions. This randomness lowers computa-
tional expense compared to deterministic approaches, such as those

Fig. 2 Computational domain showing vacuum chamber (left), high-pressure (center), and low-pressure (right) configurations with cryopumps (green),
cooled inactive pumps (pink), and cryosails (orange).

Fig. 3 Top-down view of the facility showing ion gauge locations and
orientations (teal and green), along with the thruster and beam trap
positions.

Table 1 Experimental pressure measurements
for the high-pressure configuration with neutral

xenon flowing through the H9 HET at various mass
flow rates

Mass flow
rate, sccm

Gauge 1
pressure, μTorr

Gauge 2
pressure, μTorr

100 11.6 10.6
200 19.9 18.9
300 25.9 26.5
400 31.6 33.9

Table 2 Experimental pressure measurements

for the low-pressure configuration with neutral xenon
flowing through the H9 HET at various mass

flow rates

Mass flow
rate, sccm

Gauge 1
pressure, μTorr

Gauge 2
pressure, μTorr

250 5.2 4.0
300 6.1 4.6
350 6.9 5.3
400 7.6 6.0
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used in molecular dynamics. Additionally, although the number of
actual molecules within each cubic mean free path is immense,
simulating only a small fraction of model particles is sufficient to
capture the essential characteristics of the flow. This statistically
justified assumption allows DSMC to produce highly accurate
distribution functions while maintaining computational feasibility.
To further decrease simulation run time, MONACO is highly

parallelized, allowing it to be run in a distributed sense across many
CPUs on a supercomputer. MONACO is equipped to simulate flows
on unstructured computational grids, enabling the simulation of gas
flows within complicated geometries. Collisions in the DSMC
method are performed stochastically. The No-Time-Counter scheme
[11] is used to calculate the total number of potential collision pairs
within each computational cell:

Npairs �
1

2
NPn�σg�maxΔt (2)

where Np is the total number of macroparticles, n is the number
density, �σg�max is an estimate of the maximum value of the product
of the collisional cross section with the relative speed of the collid-
ing particles, and Δt is the time step. Whether or not a given pair
collides is decided by comparing the collision probability with a
random number. The collision probability is calculated as the ratio
of σg to �σg�max. Various collision models yield different values of
σ. MONACO utilizes the variable hard-sphere model [12] to obtain
momentum exchange collision cross sections. In this model, the
cross section is a function of relative speed:

σ � σref
gref
g

−2ω
(3)

where g is the relative speed, and the power law exponent ω is a
fitting parameter related to the gas viscosity.
The DSMC model calculates pressure using the ideal gas law:

p � nkBT (4)

where kB is Boltzmann’s constant and T is the temperature of the
gas. The temperature is computed as the average of the translational
temperatures in the three coordinate directions:

T � 1

3
�Tx � Ty � Tz� (5)

Each directional temperature is computed as follows:

Tx �
m

kB

C2
x

Np

− hCxi2 (6)

Ty �
m

kB

C2
y

Np

− hCyi2 (7)

Tz �
m

kB

C2
z

Np

− hCzi2 (8)

where m is the particle mass, Ci represents the peculiar velocity
component in the ith direction, and Np is the number of particles in

the cell. This means of calculating pressure assumes that the velocity
distribution is close enough to Maxwellian that the translational
kinetic energy can be meaningfully represented by a scalar temper-
ature. Even though the pressure is being queried in low-density
regions of the plumewhere collisions are infrequent, the gas is likely
in thermal equilibrium due to interactions with the chamber walls.

3. Boundary Conditions

The number density, velocity, and temperature of xenon atoms are
prescribed over an annulus representing the thruster exit. The atom
velocity distribution is modeled as a Maxwellian, characterized by a

bulk velocity equal to the local speed of sound and a temperature of
300 K. The sonic assumption at the thruster exit is based on 1D gas
dynamics, where a subsonic flow will accelerate to sonic conditions
at a channel exit [13]. The number density is obtained from the
following mass flow rate equation:

_m � Amnv (9)

where _m is the mass flow rate, m is the propellant molecular mass, A
is the area of the thruster exit plane, n is the number density, and v is
the velocity. Particle–surface interactions are modeled with an
accommodation coefficient that sets the probability that a particle
interacting with a solid wall will reflect diffusely rather than specu-
larly. An accommodation coefficient of 0.9 means that 90% of
particle reflections will be diffuse and 10% will be specular. Walls
are set to 300 K in the simulations. The vacuum pumps are modeled
using a sticking coefficient that sets the fraction of pump inter-
actions that result in removal of an incident atom. Each pump of a
given type is assumed to have the same sticking coefficient and the
same surface temperature. This assumption simplifies the model and
enables tractable inference. Quantifying the effect of this simplifi-
cation is left to future work. The cryopump sticking coefficient
inferred in this work represents an effective sticking coefficient
for particles that interact with the chevroned orifice of the cryo-
pump. This effective coefficient is expected to be significantly lower
than values measured for the helium-cooled inner cryo-surface, as
many particles are not transmitted through the chevrons. Cryo-
pumps are nominally set to 85 K, and cryosails are set to 40 K.

B. Uncertainty Quantification

This section summarizes sources of uncertainty in the DSMC
model, the Bayesian inference approach used for model calibration,
and the methods applied for forward uncertainty quantification.

1. Sources of Uncertainty

Uncertainty arises in the DSMC evaluation of vacuum chamber
pressure due to imprecise knowledge of the experimental condi-
tions, the model fit coefficients, and natural variability in the system
(i.e., measurement uncertainty, numerical tolerance, etc.). Uncer-
tainty in the model inputs confounds understanding of the model
outputs, and so this work seeks to quantify output uncertainty by
propagating input uncertainty through the DSMC code. Input uncer-
tainty is represented by assigning a probability distribution function
(PDF) to each input that encodes a prior belief in their value and
degree of variability (i.e., wider distributions encode a greater
degree of uncertainty in the value of the inputs). Note that uncer-
tainty may also arise from the specific form of the physical DSMC
model itself (from physical assumptions, numerical approximations,
etc.), but the scope of this study is focused on quantifying only input
uncertainty.
Table 3 summarizes the model input uncertainties for the DSMC

pressure predictions. Since only an expected range of values is
known for each input, an uninformative uniform prior distribution
between upper and lower bounds is assigned (note that given
enough data, the calibration results are insensitive to the specific

Table 3 Summary of input uncertainty for the DSMC
pressure model

Parameter Symbol Unit Distribution Domain

Collision diameter d nm U�0.564; 0.584� [0.564, 0.584]

Mass flow rate _m sccm U��1%� [100, 400]

Wall accommodation
coefficient

α — — U�0.9; 1� [0.9, 1]

Cryopump surface
temperature

Tp K U�75;95� [75, 95]

Cryopump sticking
coefficient

θcp — — U�0.2; 0.6� [0.2, 0.6]

Cryosail sticking
coefficient

θcs — — U�0.2; 1� [0.2, 1]
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choice of prior here). The uncertainty in the collision diameter
comes from low-temperature, low-pressure xenon viscosity data
[14]. The mass flow rate is controlled by a mass flow controller
(ALICAT MC-500SCCM-D) with �1% accuracy and ��0.1% of
reading + 0.02% of full scale) repeatability. The wall accommoda-
tion coefficient uncertainty is reported in [15]. Appropriate bounds
for the pump sticking coefficients are informed by [5]. Cryopump
casings are nominally set to 85 K; helium-cooled pumping surfaces
inside the cryopump envelope are not explicitly modeled. While the
inner, helium-gas-cooled sticking surface operates at about 15 K, it
is assumed that returning particles primarily interact with the LN2-
cooled casing, which is closer to 85 K. A range of 75–95 K is used
to represent this surface in the absence of direct measurements. The
cryosails are assumed to operate at 40 K. Their surface temperature
is measured directly using DT-670 temperature diodes mounted on
the exposed sail surfaces, which lack any casing. Because the
cryosails contribute significantly less surface area than the cryo-
pumps and their temperatures are measured with an accuracy better
than 1 K, uncertainty in their surface temperature is neglected in this
analysis. Potential spatial variation across pump surfaces is not
modeled, though such variation could influence pumping behavior
and is identified as an area for future investigation. The uncertainty
in the initial velocity distribution of the gas at the thruster exit is
neglected in this study, based on the assumption that collisions with
internal chamber structures sufficiently randomize particle motion.
Because the primary driver of simulated pressure is the total mass
flow rate rather than the detailed velocity distribution, this simpli-
fication is considered appropriate.
The goal of this work is twofold: to infer the value of the pump

sticking coefficients from experimental pressure data and to under-
stand the effects of the input uncertainty on the model outputs.
These tasks are, respectively, accomplished by performing Bayesian
inference and forward UQ. Since both require many forward eval-
uations of the model (on the order of thousands to millions), it is
infeasible to use the full DSMC code directly. Each DSMC run takes
approximately 5 h on 72 processors. Instead, a surrogate model is
constructed to learn the input–output behavior of the DSMC pres-
sure model. Once constructed during an offline training phase, the
surrogate model can then be used in place of the full DSMC model
for UQ at comparatively negligible computational cost. In this work,
we build two surrogates: one for each of the high- and low-pressure
experiments. Since the input space is small and we expect the model
response to be smooth, we use a simple linear model for both
surrogates with third-order polynomial features to map the inputs
in Table 3 to the DSMC pressure predictions at two ion gauge
locations in the chamber. The coefficients of the linear models are
learned by linear least-squares regression with L2 regularization. A
space-filling design is used to sample the input space, where three
evenly spaced values of θcp and θcs are used with all combinations

of the upper and lower bounds of �d; α; Tp�. The four mass flow

rates in Table 1 are used for the high-pressure surrogate, and three
evenly spaced flow rates over the range (100, 400) are used for the
low-pressure surrogate. In total, this space-filling design results in
96 total DSMC simulations for training the high-pressure surrogate
and 216 total simulations for the low-pressure surrogate.

2. Bayesian Inference

This work seeks to estimate the value of the pump sticking
coefficients (θcp; θcs) given the two sets of experimental data
(y1; y2), corresponding to the high- and low-pressure data in Tables 1
and 2, respectively. We use the notation y1 � fy1;igNi�1 and y2 �
fy2;igNi�1 to indicate multiple independent measurements y1;i and y2;i
from each experiment (specifically N � 8 in both Tables 1 and 2).
Given the data, we want to obtain the posterior distribution
p�θcp; θcsjy1; y2� from Bayes’s rule:

p�θcp; θcsjy1; y2� ∝ p�y1; y2jθcp; θcs�p�θcp�p�θcs� (10)

where p�θcp� and p�θcs� are the independent priors of the sticking

coefficients as given in Table 3. We group all other model uncertainties

present in Table 3 into the term ϕ � �d; _m; α; Tp�with the associated
prior p�ϕ� (note that _m actually has four terms corresponding to all

of the mass flow rates in either Table 1 or Table 2). Ideally, the data is

informative for learning the sticking coefficients, and so the posterior

would be much narrower than the prior, indicating that uncertainty in

the sticking coefficients has been reduced. To compute the posterior,

we model each data point as distributed normally about a forward

model prediction:

y1;i � f1�θcp;ϕ�i � ξ1; where ξ1 ∼N �0;ψ2
1�; and (11)

y2;i � f2�θcp; θcs;ϕ�i � ξ2; where ξ2 ∼N �0;ψ2
2� (12)

In these expressions, f1 and f2 are the surrogates trained on DSMC

simulations to predict pressure at the ion gauge locations in the

chamber for the high- and low-pressure cases, respectively. The i

subscript denotes the ith data point y1;i or y2;i and the corresponding
surrogate predictions f1�⋅�i or f2�⋅�i. Note that f1 does not depend
on θcs, since the cryosails were only used in the low-pressure experi-
ment. The Gaussian noise terms ξ1 and ξ2 encode the modeling

choice that experimental measurements are the result of a forward

model prediction and additive experimental noise. We assume a 10%

experimental noise for the ion gauge measurements in this work,

such that 2ψ1 � 0.1y1 and 2ψ2 � 0.1y2. Due to the form of

Eqs. (11) and (12) and since the data points are independent, the

conditional likelihoods of each dataset are Gaussian PDFs centered

at the model evaluations:

p�y1jθcp;ϕ� �
N

i�1

1

ψ1 2π
p exp

−�y1;i − f1�θcp;ϕ�i�2
2ψ1

(13)

p�y2jθcp; θcs;ϕ� �
N

i�1

1

ψ2 2π
p exp

−�y2;i − f2�θcp; θcs;ϕ�i�2
ψ2

(14)

The marginal likelihood p�y1; y2jθcp; θcs� can then be obtained

by integrating over all other uncertainties present in the ϕ term:

p�y1; y2jθcp; θcs� � p�y1; y2jθcp; θcs;ϕ�p�ϕjθcp; θcs� dϕ (15)

� p�y1jy2; θcp; θcs;ϕ�p�y2jθcp; θcs;ϕ�p�ϕ� dϕ (16)

where we have included that ϕ is independent of the sticking

coefficients �θcp; θcs�. We can further simplify Eq. (16) by including

that y1 is independent of θcs and the low-pressure dataset y2:

p�y1; y2jθcp; θcs� � p�y1jθcp;ϕ�p�y2jθcp; θcs;ϕ�p�ϕ� dϕ
(17)

Equation (17) intuitively indicates that the likelihood of both datasets

(y1; y2) can be factored into the likelihoods of each individual dataset
[Eqs. (13) and (14)]. The integration over ϕ is finally performed by a

Monte Carlo estimate with M samples:

p�y1; y2jθcp; θcs� ≈
1

M

M

i�1

p�y1jθcp;ϕ�i��p�y2jθcp; θcs;ϕ�i��;

where ϕ�i� ∼ p�ϕ� (18)

and so the posterior in Eq. (10) can be estimated for any set of sticking

coefficients (θcp; θcs). In this work, we use a pseudo-marginal Mar-

kov chain Monte Carlo (MCMC) routine [16] to sample from the full

posterior given the unnormalized estimate in Eq. (10).
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3. Forward UQ

After inferring the posterior distribution of the sticking coeffi-
cients, we then study the impact of the input uncertainties on the
pressure predictions using the sampling-based Monte Carlo method.
For a given mass flow rate, a set of N input samples are drawn:

fθcp;i; θcs;igNi�1 ∼ p�θcp; θcsjy1; y2� and fϕigNi�1 ∼ p�ϕ�, and then

propagated through the surrogate models to obtain the pressure
predictions y1;i � f1�θcp;i;ϕi� and y2;i � f2�θcp;i; θcs;i;ϕi�. Statis-
tics of the output distributions p�y1� and p�y2� can then be esti-
mated using Monte Carlo estimators, e.g., the mean via

�y ≈ �1∕N� N
i�1 yi. In this work, we compute credible intervals to

compare the model to experimental data using the 5th and 95th
percentiles of surrogate predictions.
This work also employs the global, variance-based Sobol’

method for sensitivity analysis to quantify how uncertainty in the
output arises from uncertainty in the inputs [17,18]. The Sobol’
method decomposes the output variance into unique contributions
from individual inputs, as well as contributions from interactions
between inputs. The quantities of interest in the Sobol’ method are
the first-order Sobol’ indices: Si � Vi∕V�y�, where Vi is the partial
variance due to the ith input xi, and V�y� is the total observed
variance in the output. The partial variances are computed by

Vi � Vxi�Ex∼i �yjxi�� (19)

where the inner expectation is taken of the output y for a fixed input
xi over all possible values of the other inputs x∼i. The outer variance
is then taken over all possible values of xi. This work also considers
higher-order and total-order indices using sample-based numerical
estimators found in [19,20]. All model evaluations required for
estimating the Sobol’ indices are computed with the surrogates.
The results of this global sensitivity analysis indicate not only the
inputs with greater impact on output uncertainty but also the relative
magnitude of their importance compared to other inputs.

IV. Results

A. Vacuum Chamber Simulation

A depiction of the 3D unstructured grid used by MONACO is
shown in the left panel of Fig. 2. The mesh is composed of
approximately 130,000 cells and contains detailed information
regarding the location and size of the thruster, the chamber walls,
the vacuum pumps, the beam trap, and the floor. Each DSMC
simulation takes approximately 5 h to run on 72 processors. The

DSMC simulations contain between 3 and 4 million particles at

steady state. Simulations take about 40,000 iterations to reach
steady state with a time step of 10−4 s. The mean collision time

per particle is on the order of 10−2 s. Once simulations reach steady
state, samples are taken every time step for 100,000 iterations to

obtain meaningful statistical results [21]. The relative statistical
uncertainty in DSMC pressure estimates scales as the inverse square

root of the number of independent samples. Given our sampling
over 100,000 time steps with approximately 25 particles per cell, the

relative error in the reported pressure values is estimated to be
0.06%. The mean free path of the gas is on the order of 1 m, and

the edges of the computational cells do not exceed 0.3 m.
Representative simulated pressure distributions for cold flow

through the H9 HET operating in the vacuum chamber using the
high-pressure configuration are presented in Fig. 4. The contour

plots in Fig. 4 show the pressure in Torr within a 2D slice of the 3D
solution for simulations using different pump sticking coefficients.
These plots highlight the spatial variability of chamber pressure and

demonstrate that increasing the sticking coefficient effectively low-
ers the overall chamber pressure.
Figure 5 presents xenon temperature contours from the same

simulations as Fig. 4. The temperature distributions are largely
consistent across the cases, with most of the gas near 300 K,
corresponding to the temperature of the chamber walls. As the

sticking coefficient increases, the 300 K contour expands due to
the pumps becoming more effective at removing particles, resulting

in fewer being reflected back into the chamber at low pump temper-
atures. Low-temperature regions are observed near the pumps, and a

distinct low-temperature zone also forms in front of the thruster due
to the collimated neutral flow. This feature becomes more pro-

nounced with higher sticking coefficients, as the reduced back-
ground density allows the low-temperature core to extend further

before collisions with background gas thermalize the flow. Figure 6
presents the magnitude of the bulk velocity in the same 2D slice.
While higher sticking coefficients produce slightly larger regions

with elevated bulk velocities, most of the chamber—including the
regions where the ion gauges are located—exhibits bulk velocities

below 10 m∕s. This supports the validity of ion gauge pressure
measurements, which assume isotropic flow.
Figure 7 illustrates how the pressure at two gauge locations varies

with mass flow rate. The plots compare experimental measurements

with simulation results for each gauge location, corresponding to the
high-pressure pump configuration. The simulations were conducted

with sticking coefficients of 0.2, 0.4, and 0.6. From the plots, the

Fig. 4 Pressure (Torr) contours in chamber midplane from cold flow simulations with pump sticking coefficients of 0.2 (upper left), 0.4 (upper right),

and 0.6 (bottom).
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Fig. 6 Bulk velocity magnitude (m∕s) contours in chamber midplane from cold flow simulations with pump sticking coefficients of 0.2 (upper left), 0.4
(upper right), and 0.6 (bottom).

Fig. 7 Pressure vs mass flow rate from simulations and experiments for the high-pressure configuration at gauge 1 (left) and gauge 2 (right). See Fig. 3
for locations.

Fig. 5 Temperature (K) contours in chamber midplane from cold flow simulations with pump sticking coefficients of 0.2 (upper left), 0.4 (upper right),
and 0.6 (bottom).
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sticking coefficient of the cryopumps is estimated to lie between 0.2
and 0.4. This initial sweep of sticking coefficients establishes a
reasonable range that informs the assigned prior distribution. After
refining this prior distribution, a surrogate model was constructed to
effectively interpolate and identify the optimal sticking coefficient,
accounting for all simulation uncertainties.

B. Surrogate for the DSMC Model

In order to calibrate the sticking coefficients in the DSMC
simulation, two surrogate models were constructed to approximate
the DSMC pressure predictions, one for the high-pressure experi-
ment and one for the low-pressure experiment. The DSMC simu-
lations were obtained using a space-filling design over the input
space, resulting in 96 total simulations for the high-pressure surro-
gate and 216 total simulations for the low-pressure surrogate. Each
of these datasets was split so that 20% of the data was held out for
validating the surrogate’s performance. Linear regression was then
performed on the remaining 80% of the data to train the coefficients

of the surrogates. The performance of the surrogates on the training
and validation sets was evaluated using the R2 coefficient of deter-
mination, as well as the relative L2 error, defined as

RelativeL2 Error �
ky − ŷk2
kyk2

(20)

where y and ŷ are the vectors of DSMC and surrogate predictions,
respectively. Table 4 summarizes the performance of both surro-
gates, and Figs. 8 and 9, respectively, show the high- and low-
pressure surrogate predictions compared to the DSMC simulations.
Both surrogates are shown to have relative errors <0.5% on an

independent validation set, indicating good agreement with the
DSMC simulation over the input space under consideration. This
is again observed in Figs. 8 and 9, where both training and validation
set predictions fall along the ideal prediction line, which indicates
good agreement between the surrogate and the true model. The
goodness of fit forz both surrogates can be attributed to a smooth
and simple model response over a small input space, and so the usage
of the surrogates in place of the full DSMC simulation for cheap
model approximation is justified in the rest of the analysis. Note that
while the space-filling design selected training data a priori, an
adaptive approach may have achieved similar accuracy for a smaller
computational cost by more efficiently choosing the training data.

C. Calibration of Sticking Coefficients

We now summarize the results of the sticking coefficient calibra-
tion procedure described in Sec. III.B.2. MCMC is performed using
the surrogate for 20,000 iterations with a burn-in fraction of 10%

Fig. 8 Comparison of high-pressure surrogate and DSMC predictions at gauges 1 and 2 on training and validation data. Proximity to y � x indicates
good agreement.

Fig. 9 Comparison of low-pressure surrogate and DSMC predictions at gauges 1 and 2 on training and validation data. Proximity to y � x indicates
good agreement.

Table 4 R2 coefficients and relative L2 errors for
high- and low-pressure surrogates on training and

validation data (R2 near 1 and low L2 indicate good
agreement with DSMC)

Surrogate

Training Validation

R2 L2, % R2 L2, %

High pressure >0.99 0.2 >0.99 0.3
Low pressure >0.99 0.1 >0.99 0.2
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and a resulting acceptance ratio of 72%. The statistics of the
posterior marginals for each sticking coefficient are summarized
in Table 5 along with the original priors from Table 3 for compari-
son. Figure 10 additionally shows the joint PDF and 1D marginal
distributions of the posterior p�θcp; θcsjy1; y2�, smoothed using a
Gaussian kernel density estimate. The maximum a posteriori (or
posterior “mode”) is estimated as the maximum of the kernel density
estimate for each 1D marginal distribution.
We observe from the statistics in Table 5 and the marginal plots in

Fig. 10 that the 1D marginal distribution of the cryopump sticking
coefficient is approximately normal about θcp ≈ 0.263, which
agrees with our prior intuition from the simulations in Fig. 7 and
our previous work [22]. Reference [5] reports an inferred sticking
coefficient of approximately 0.4 for a similar type of cryopump.
Differences between their values and those inferred here likely stem
from differences in simulation approaches and fidelity: their simu-
lations used an axisymmetric code, assumed fully diffuse wall
reflections, consolidated the total pumping area into a single large
pump, and applied a surface temperature of 15 K, representative of
the inner cryo-surface rather than the outer casing.
Assuming an isotropic Maxwellian velocity distribution, the

sticking coefficient can be estimated from the manufacturer-
reported pumping speed using the following expression:

θ � f

A kBT
2πm

(21)

where θ is the sticking coefficient, f is the pumping speed, and A is
the effective pump surface area. For the cryopumps, the reported

pumping speed is 35 m3∕s, and the surface area is 2.7 m2. Assuming

xenon gas at 300 K, Eq. (21) gives an estimated sticking coefficient
of 0.24. This value is reasonably close to our inferred value of 0.263
and serves as a useful sanity check.
Additionally, we observe a roughly skew-normal distribution of

the cryosail sticking coefficient with a most probable value of
θcs ≈ 0.221, which again agrees with our previous study [22]. The
manufacturer-reported pumping speed for the cryosails assumes
perfect sticking and therefore does not provide a meaningful basis
for estimating the actual sticking coefficient. Since the minimum
posterior value of the cryosail sticking coefficient is equal to the
prior minimum bound of θcs � 0.2, it is likely that the posterior
extends to θcs < 0.2; this result may warrant extending the training
bounds of the surrogate to θcs < 0.2 and recalibrating to fully
characterize the PDF. However, given the large right-skew in the
1D marginal distribution of θcs, it is likely that we have already
captured the majority of the density function.
We finally observe the large reduction in uncertainty from the

before posterior as given in Table 5. The reduction in uncertainty
was greater for θcp likely because both datasets (y1; y2) were
informative for learning the cryopump sticking coefficient (the
cryopump was used in both experiments). In contrast, only y2 is
informative for learning the cryosail sticking coefficient, and so the
posterior of θcs is much wider. It is likely that additional experi-
ments with the cryosails activated would provide useful data for
reducing the uncertainty of θcs further.

D. UQ and Sensitivity Analysis

Figure 11 compares model predictions to the experimental data in
Tables 1 and 2 for the high- and low-pressure experiments, respec-
tively. Predictions for gauge 1 are shown in red, and predictions for
gauge 2 are shown in green. The shaded regions indicate the 5th and
95th percentiles of model predictions over N � 1000 Monte Carlo

samples of the uncertain inputs, i.e., ϕ�i� ∼ p�ϕ� and θ�i�cp; θ
�i�
cs∼

p�θcp; θcsjy1; y2� for i � 1 : : : N, which induces the uncertain

model predictions y�i�1 � f1�θ�i�cp;ϕ�i�� and y�i�2 � f2�θ�i�cp; θ�i�cs ;ϕ�i��
as notated in Sec. III.B.2. Similar to the MCMC routine, all Monte
Carlo model evaluations are computed with the surrogates f1�⋅� and
f2�⋅�. The solid lines present the median model predictions.
The increase in model uncertainty for increasing mass flow rates

is consistent with the increasing experimental uncertainty (as indi-
cated by the error bars on the experimental data). Overall, the model
predictions quantitatively agree well with the experimental data
given all uncertainties present in the system. The model predicts
the pressure at both gauges well for the high-pressure experiment
but underpredicts the pressure at gauge 1 for the low-pressure
experiment. One possible explanation is that θcp is primarily tuned
to fit the high-pressure data (where θcs is not involved). A lower θcp
would have allowed a better fit for the low-pressure data since it
would increase the model’s pressure predictions at both gauge
locations. However, a lower θcp would then result in a less accurate

fit to the high-pressure data; the model must trade off accuracy in the
high-pressure predictions to additionally fit the low-pressure data.
Correspondingly, the calibration procedure reduced θcs to the lowest
value allowed under the prior to correct for the under-predicted
pressure values in the low-pressure experiment. This negative cor-
relation between θcp and θcs is also apparent in Fig. 10, where

higher values of θcp are correlated with lower values of θcs and vice
versa. While the model fits well on average, this result does indicate
some limitation in using a single set of global sticking coefficients
for each pump over all operating conditions.
This work also seeks to quantify the relative impact of each

source of uncertainty on the model predictions of pressure. For this,
the first-order (S1) and total-order (ST) Sobol’ indices are estimated
for the low-pressure case over varying mass flow rates, as shown in
Fig. 12 for both the prior and posterior distributions. The indices are
estimated with N � 10;000 Monte Carlo samples of the uncertain
inputs (see Sec. III.B.3 and references therein). The quantity of
interest for this sensitivity analysis is the pressure at gauge 1 (the
results are very similar when using gauge 2). The first-order indices
exist on the domain [0, 1], with higher values indicating a greater

Table 5 Statistics of 1D marginal posteriors for cryopump (θcp) and
cryosail (θcs) sticking coefficients (modes estimated via Gaussian kernel

density maxima)

Variable Prior

Posterior

Min
5th
pctile

50th
pctile

95th
pctile Max Mode

Std
dev

θcp U�0.2; 0.6� 0.241 0.254 0.263 0.272 0.283 0.262 0.006

θcs U�0.2; 1� 0.200 0.206 0.266 0.417 0.654 0.221 0.067

Fig. 10 Joint posterior and 1D marginals for cryopump and cryosail
sticking coefficients from 20,000 MCMC samples, smoothed using
Gaussian kernel density estimates.
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contribution of a given input’s unique contribution to the output

uncertainty; the total-order indices additionally account for uncer-

tainty due to interactions between parameters. The fact that S1 and
ST are very similar for each parameter indicates that the model is

fairly well decoupled, i.e., the model responds mostly to indepen-

dent changes in each parameter.

Figure 12 clearly demonstrates the intuition that, given the prior

distribution, the uncertainty in the cryopump sticking coefficient

exerts the most significant influence on model output uncertainty.

This is precisely why the current study targets calibration of the

sticking coefficients over other parameters. The cryosail sticking

coefficient emerges as the second most impactful parameter under

the prior distribution, although negligible compared to the cryo-

pump. Notably, the posterior distribution for the sticking coeffi-

cients is considerably narrower compared to the prior (see Table 5).

This reduction in uncertainty is so pronounced that, in the posterior

Sobol’ analysis, most other uncertain parameters exhibit a greater

relative impact on the output uncertainty than the sticking coeffi-

cients. This agrees with the observation that the experimental data

was very informative in learning the sticking coefficients.

The 1% uncertainty in the mass flow rate has a negligible effect

on the model predictions at low flow rates; however, its impact

increases slightly at higher flow rates, as expected. The increasing

significance of the collision diameter d at higher flow rates is

expected because a greater gas density leads to more frequent

collisions. A surprising result is the increasing importance of the

wall accommodation coefficient α and the cryopump surface tem-

perature Tp for increasing flow rates. This may be attributed to

higher flow rates, leading to increased incident fluxes on the wall

and pump surfaces, thereby amplifying the relative influence of α
and Tp. This interpretation is in agreement with the corresponding

increase in total model uncertainty for increasing flow rates shown

in Fig. 11. Since the relative sensitivities of the other uncertain input

parameters �α; d; Tp; _m� increase with mass flow rate, a correspond-

ing decrease in relative sensitivity of the sticking coefficients is

observed. Lastly, we note that ST > S1 for both sticking coefficients
under the posterior distribution, which likely indicates some impact

of coupling between θcp and θcs on model output uncertainty.

V. Conclusions

Ground-based electric propulsion testing facilities interfere with

thruster performance and plume characteristics. Elevated back-

ground pressures caused by the inherently limited pumping capa-

bilities of these facilities alter the amount of gas ingested by the

thruster, the production of charge-exchange ions, and the divergence

of the plume. These effects and others undermine confidence in the

ability of performance and lifetime test results conducted in ground-

based facilities to accurately reflect how thrusters will behave in

space environments. High-power electric propulsion thrusters will

exacerbate these facility effects. Thruster and plume models that

account for facility effects must accompany ground-based tests to

extrapolate from nonideal chambers to space environments in a

predictive fashion. This work is an initial step toward equipping

thruster and plume models with a means of accurately recreating the

a) High-pressure experiment b) Low-pressure experiment

Fig. 11 Calibrated model predictions (lines) vs experimental pressure data (markers) over mass flow rates. Shaded regions show 5th–95th percentiles
from 1000 Monte Carlo samples.

a) Prior distribution b) Posterior distribution

Fig. 12 Sobol’ S1 and ST indices for each uncertain input under prior (a) and posterior (b) distributions as functions of mass flow rate with 95%
confidence intervals.
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elevated background pressure experienced by thrusters in ground-
based facilities.
Posterior distributions of sticking coefficients have been obtained

for the two types of pumps that populate the vacuum chamber.
Surrogate models, trained on hundreds of high-fidelity DSMC
simulations, enabled detailed Bayesian inference of pump sticking
coefficients and thorough uncertainty quantification. The Sobol’
method was used for sensitivity analysis and illustrated that cali-
brating the pump sticking coefficients with pressure measurements
reduced their uncertainties effectively, such that they were no longer
the most significant contributors to pressure prediction uncertainty
under the posterior. Model predictions using the inferred sticking
coefficients agree well with experimental ionization gauge measure-
ments within error bounds. The agreement between backpressure
measurements and simulation predictions supports the utility of this
approach in modeling chamber vacuum pumps. Accurately model-
ing facility backpressure within simulations of plasma flow experi-
ments is a crucial capability for investigating the role of this facility
effect on electric propulsion thrusters and their plumes. Future work
will involve the application of these sticking coefficients within
simulations of plasma flow experiments of the H9 HET in the
chamber to evaluate a coupled thruster–plume model. Another
interesting area of future work would be extending the current UQ
analysis to optimally design new data collection experiments or
simulations to reduce uncertainty further and increase confidence
in the model predictions.
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